
On Challenges in Evaluating Malware Clustering

Peng Li1, Limin Liu2, Debin Gao3, and Michael K. Reiter1

1 Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
2 State Key Lab of Information Security, Graduate School of Chinese Academy of Sciences

3 School of Information Systems, Singapore Management University,Singapore

Abstract. Malware clustering and classification are important tools that enable
analysts to prioritize their malware analysis efforts. The recent emergence of fully
automated methods for malware clustering and classification that reporthigh ac-
curacy suggests that this problem may largely be solved. In this paper, we report
the results of our attempt to confirm our conjecture that the method of selecting
ground-truth data in prior evaluations biases their results toward high accuracy.
To examine this conjecture, we apply clustering algorithms from a different do-
main (plagiarism detection), first to the dataset used in a prior work’s evaluation
and then to a wholly new malware dataset, to see if clustering algorithms de-
veloped without attention to subtleties of malware obfuscation are nevertheless
successful. While these studies provide conflicting signals as to the correctness
of our conjecture, our investigation of possible reasons uncovers, webelieve, a
cautionary note regarding thesignificanceof highly accurate clustering results,
as can be impacted by testing on a dataset with a biased cluster-size distribution.

Keywords: malware clustering and classification, plagiarism detection

1 Introduction

The dramatic growth of the number of malware variants has motivated methods to clas-
sify and group them, enabling analysts to focus on the truly new ones. The need for such
classification and pruning of the space of all malware variants is underlined by, e.g., the
Bagle/Beagle malware, for which roughly 30,000 distinct variants were observed be-
tween January 9 and March 6, 2007 [8]. While initial attempts at malware classification
were performed manually, in recent years numerousautomatedmethods have been de-
veloped to perform malware classification (e.g., [11, 6, 5, 16, 9, 13, 15]). Some of these
malware classifiers have claimed very good accuracy in classifying malware, leading
perhaps to the conclusion that malware classification is more-or-less solved.

In this paper, we show that this may not be the case, and that evaluating automated
malware classifiers poses substantial challenges that we believe require renewed at-
tention from the research community. A central challenge isthat with the dearth of a
well-defined notion of when two malware instances are the “same” or “different”, it is
difficult to obtain ground truth to which to compare the results of a proposed classifier.
Indeed, even manually encoded rules to classify malware seems not to be enough —
a previous study [6] found that a majority of six commercial anti-virus scanners con-
curred on the classification of 14,212 malware instances in only 2,658 cases. However,

in the absence of better alternatives for determining ground truth, such instances and
their corresponding classifications are increasingly usedto evaluate automated meth-
ods of malware clustering. For example, a state-of-the-artmalware clustering algorithm
due to Bayer et al. [6] achieved excellent results using these 2,658 malware instances
as ground truth; i.e., the tool obtained results that largely agreed with the clustering of
these 2,658 malware instances by the six anti-virus tools.

The starting point of the present paper is the possibility, we conjectured, that one
factor contributing to these strong results might be that these 2,658 instances are simply
easy to classify, by any of a variety of techniques. We reporton our efforts to exam-
ine this possibility, first by repeating the clustering of these instances using algorithms
from an ostensibly different domain, namely plagiarism detectors that employ dynamic
analysis. Intuitively, since plagiarism detectors are developed without attention to the
specifics of malware obfuscation, highly accurate clustering results by these tools might
suggest that this method of selecting ground-truth data biases the data toward easy-to-
classify instances. We describe the results of this analysis, which indicate that plagia-
rism detectors have nearly the same success in clustering these malware instances, thus
providing tentative support for this conjecture.

To more thoroughly examine this possibility, we then attempted to repeat the evalu-
ation methodology of Bayer et al. on a new set of malware instances. By drawing from
a database of malware instances, we assembled a set for whichfour anti-virus tools con-
sistently labeled each member. We detail this study and report on its results that, much
to our surprise, find that neither the Bayer et al. technique nor the plagiarism detectors
we employed were particularly accurate in clustering theseinstances. Due to certain
caveats of this evaluation that we will discuss, this evaluation is materially different
from that for the previous dataset, causing us to be somewhattentative in the conclu-
sions we draw from it. Nevertheless, these results temper the confidence with which
we caution that the selection of ground-truth data based on the concurrence of multiple
anti-virus tools biases the data toward easy-to-classify instances.

But this leaves the intriguing question: Why the different results on the two datasets?
We complete our paper with an analysis of a factor that, we believe, contributes to
(though does not entirely explain) this discrepancy, and that we believe offers a cau-
tionary note for the evaluation of malware clustering results. This factor is the makeup
of the ground-truth dataset, in terms of the distribution ofthe sizes of the malware
families it contains. We observe that the original dataset,on which the algorithms we
consider perform well, is dominated by two large families, but the second dataset is
more evenly distributed among many families. We show that this factor alone biases
the measures used in comparing the malware clustering output to the dataset families,
specifically precision and recall, in that it increases the likelihood of good precision
and recall numbers occurring by chance. As such, the biased cluster-size distribution in
the original dataset erodes thesignificance(c.f., [22, Section 8.5.8]) of the high preci-
sion and recall reported by Bayer et al. [6]. This observation, we believe, identifies an
important factor for which to control when measuring the effectiveness of a malware
clustering technique.

While we focus on a single malware classifier for our analysis [6], we do so because
very good accuracy has been reported for this algorithm and because the authors of that

technique were very helpful in enabling us to compare with their technique. We hasten
to emphasize, moreover, that our comparisons to plagiarismdetectors are not intended
to suggest that plagiarism detectors are the equal of this technique. For one, we believe
the technique of Bayer et al. is far more scalable than any of the plagiarism detectors
that we consider here, an important consideration when clustering potentially tens of
thousands of malware instances. In addition, the similar accuracy of the technique of
Bayer et al. to the plagiarism detectors does not rule out thepossibility that the plagia-
rism detectors are more easily evaded (in the sense of diminishing clustering accuracy);
rather, it simply indicates that malware today does not seemto do so. We stress that the
issues we identify are not a criticism of the Bayer et al. technique, but rather are issues
worth considering for any evaluation of malware clusteringand classification.

To summarize, the contributions of this paper are as follows. First, we explore the
possibility that existing approaches to obtaining ground-truth data for malware cluster-
ing evaluation biases results by isolating those instancesthat are simple to cluster or
classify. In the end, we believe our study is inconclusive onthis topic, but that reporting
our experiences will nevertheless raise awareness of this possibility and will underline
the importance of finding methods to validate the ground-truth data employed in this
domain. Second, we highlight the importance of thesignificanceof positive cluster-
ing results when reporting them. This has implications for the datasets used to evalu-
ate malware clustering algorithms, in that it requires thatdatasets exhibiting a biased
cluster-size distribution not be used as the sole vehicle for evaluating a technique.

2 Classification and Clustering of Malware

To hinder static analysis of binaries, the majority of current malware makes use of ob-
fuscation techniques, notably binary packers. As such, dynamic analysis of such mal-
ware is often far more effective than static analysis. Monitoring the behavior of the
binary during its execution enables collecting a profile of the operations that the binary
performs and offers potentially greater insight into the code itself if obfuscation is re-
moved (e.g., the binary is unpacked) in the course of runningit. While this technique
has its limitations — e.g., it may be difficult to induce certain behaviors of the malware,
some of which may require certain environmental conditionsto occur [10, 14, 19, 20] —
it nevertheless is more effective than purely static approaches. For this reason, dynamic
analysis of malware has received much attention in the research community. Analysis
systems such as CWSandbox [25], Anubis [7], BitBlaze [18], Norman [2] and Threat-
Expert [1] execute malware samples within an instrumented environment and monitor
their behaviors for analysis and development of defense mechanisms.

A common application for dynamic analysis of malware is to group malware in-
stances, so as to more easily identify the emergence of new strains of malware, for
example. Such grouping is often performed using machine learning, either bycluster-
ing (e.g., [6, 17, 15]) or byclassification(e.g., [13, 5, 16, 11]), which are unsupervised
and supervised techniques, respectively.

Of primary interest in this paper are the methodologies thatthese works employ to
evaluate the results of learning, and specifically the measures of quality for the clus-
tering or classification results. LetM denote a collection ofm malware instances to

be clustered, or the “test data” in the case of classification. Let C = {Ci}1≤i≤c and
D = {Di}1≤i≤d be two partitions ofM , and letf : {1 . . . c} → {1 . . . d} and
g : {1 . . . d} → {1 . . . c} be functions. Many prior techniques evaluated their results
using two measures:

prec(C,D) =
1

m

c
∑

i=1

|Ci ∩Df(i)|

recall(C,D) =
1

m

d
∑

i=1

|Cg(i) ∩Di|

whereC is the set of clusters resulting from the technique being evaluated andD is the
clustering that represents the “right answer”.

More specifically, in the case of classification,Ci is all test instances classified as
classi, andDi is all test instances that are “actually” of classi. As such, in the case of
classification,c = d andf andg are the identity functions. As a resultprec(C,D) =
recall(C,D), and this measure is often simply referred to asaccuracy. This is the mea-
sure used by Rieck et al. [16] to evaluate their malware classifier, and Lee et al. [13]
similarly useserror rate, or one minus the accuracy.

In the clustering case, there is no explicit label to define the cluster inD that corre-
sponds to a specific cluster inC, and so one approach is to define

f(i) = argmax
i′

|Ci ∩Di′ |

g(i) = argmax
i′

|Ci′ ∩Di|

In this case,f andg will not generally be the identity function (or even bijections),
and so precision and recall are different. This approach is used by Rieck et al. [17]
and Bayer et al. [6] in evaluating their clustering techniques. In this case, when it is
desirable to reduce these two measures into one, a common approach (e.g., [17]) is to
use the F-measure:

F-measure(C,D) =
2 · prec(C,D) · recall(C,D)

prec(C,D) + recall(C,D)

This background is sufficient to highlight the issues on which we focus in the paper:

Production ofD: A central question in the measurement of precision and recall is how
the reference clusteringD is determined. A common practice is to use an existing anti-
virus tool to label the malware instancesM (e.g., [16, 13, 11]), the presumption being
that anti-virus tools embody hand-coded rules to label malware instances and so are a
good source of “manually verified” ground truth. Unfortunately, existing evidence sug-
gests otherwise, in that it has been shown that anti-virus engines often disagree on their
labeling (and clustering) of malware instances [5]. To compensate for this, another prac-
tice has been to restrict attention to malware instancesM on which multiple anti-virus
tools agree (e.g., [6]). Aside from substantially reducingthe number of instances, we
conjecture that this practice might contribute to more favorable evaluations of malware

classifiers, essentially by limiting evaluations to easy-to-cluster instances. To demon-
strate this possibility, in Section 3 we consider malware instances selected in this way
and show that they can be classified by plagiarism detectors (designed without attention
to the subtleties of malware obfuscation) with precision and recall comparable to that
offered by a state-of-the-art malware clustering tool.

Distribution of cluster sizes inC and D: In order to maximize both precision and
recall (and hence the F-measure), it is necessary forC andD to exhibit similar cluster-
size distributions; i.e., if one of them is highly biased (i.e., has few, large clusters) and
the other is more evenly distributed, then one of precision or recall will suffer. Even
when they exhibit similar cluster-size distributions, however, the degree to which that
distribution is biased has an effect on thesignificance(e.g., [22, Section 8.5.8]) that
one can ascribe to high values of these measures. Informally, the significance of a given
precision or recall is related to the probability that this value could have occurred by
random chance; the higher the probability, the less the significance. We will explore the
effect of cluster-size distribution on significance, and specifically the impact of cluster-
size distribution on the sensitivity of the F-measure to perturbations in the distance
matrix from which the clusteringC is derived. We will see that all other factors held
constant, good precision and recall when the reference clusters inD are of similar size
is more significant than if the cluster sizes are biased. Thatis, small perturbations in the
distance matrix yieldingC tends to decay precision and recall more than ifD andC are
highly biased.

We will demonstrate this phenomenon using the malware clustering results obtained
from the state-of-the-art malware clustering tool due to Bayer et al., which obtains
very different results on two malware datasets, one with a highly biased clustering and
one with a more even clustering. While this is not the only source of variation in the
datasets, and so the different results cannot be attributedsolely to differences in cluster
size distributions, we believe that the cluster size distribution is a factor that must be
taken into account when reporting malware clustering results.

3 A Potential Hazard of Anti-Virus Voting

As discussed in Section 2, a common practice to produce the ground-truth reference
clusteringD for evaluating malware clustering algorithms is to use existing anti-virus
tools to label the malware instances and to restrict attention to malware instancesM
on which multiple anti-virus tools agree. The starting point of our study is one such
ground-truth dataset, here denoted BCHKK-data, that was used by Bayer et al. for eval-
uating their malware clustering technique [6]. Using this dataset, their algorithm, here
denoted BCHKK-algo, yielded a very good precision and recall (of 0.984 and0.930,
respectively). BCHKK-data consists of2, 658 malware instances, which is a subset of
14, 212 malware instances contributed between October 27, 2007 andJanuary 31, 2008
by a number of security organizations and individuals, spanning a wide range of sources
(such as web infections, honeypots, botnet monitoring, andother malware analysis ser-
vices). Bayer et al. ran six different anti-virus programs on these14, 212 instances,
and a subset of2, 658 instances on which results from the majority of these anti-virus

programs agree were chosen to form BCHKK-data for evaluation of their clustering
technique BCHKK-algo. Bayer et al. explained that such a subset was chosen because
they are the instances on which ground truth can be obtained (due to agreement by a
majority of the anti-virus programs they used).

This seems to be a natural way to pickM for evaluation, as they are the only ones
for which the ground-truth clustering (i.e.,D) could be obtained with good confidence.
However, this also raises the possibility that the instances on which multiple anti-virus
tools agree are just the malware instances that are relatively easy to cluster, while the
difficult-to-cluster instances are filtered out ofM . If this were the case, then this could
contribute to the high precision and recall observed for theBCHKK-data dataset, in
particular.

Unfortunately, we are unaware of any accepted methodology for testing this possi-
bility directly. So, we instead turn to another class of clustering tools derived without
attention to malware clustering, in order to see if they are able to cluster the malware
instances in BCHKK-data equally well. Specifically, we apply plagiarism detectors to
the BCHKK-data to see if they can obtain good precision and recall.

3.1 Plagiarism detectors

Plagiarism detection is the process of detecting that portions within a work are not orig-
inal to the author of that work. One of the most common uses of software plagiarism
detection is to detect plagiarism in student submissions inprogramming classes (e.g.,
Moss [4], Plaque [24], and YAP [26]). Software plagiarism detection and malware clus-
tering are related to one another in that they both attempt todetect some degree of sim-
ilarity in software programs among a large number of instances. However, due to the
uniqueness of malware samples compared to software programs in general (e.g., in us-
ing privileged system resources) and due to the degree of obfuscation typically applied
to malware instances, we did not expect plagiarism detectors to produce good results
when clustering malware samples.

Here we focus on three plagiarism detectors that monitor dynamic executions of
a program. We do not include those applying static analysis techniques as they are
obviously not suitable for analyzing (potentially packed)malware instances.

– APISeq: This detector, proposed by Tamada et al. [21], computes the similarity
of the sequences of API calls produced by two programs to determine if one is
plagiarized from the other. Similarity is measured by usingstring matching tools
such as diff and CCFinder [12].

– SYS3Gram: In this detector, due to Wang et al. [23], short sequences (specifically,
triples) of system calls are used as “birthmarks” of programs. Similarity is mea-
sured as the Jacaard similarity of the birthmarks of the programs being compared,
i.e., as the ratio between the sizes of two sets: (i) the intersection of the birthmarks
from the two programs, and (ii) the union of the birthmarks from the two programs.

– API3Gram: We use the same idea as in SYS3Gram and apply it to API calls to
obtain this plagiarism detector.

We emphasize that the features on which these algorithms detect plagiarism are dis-
tinct from those employed by BCHKK-algo. Generally, the features adopted in BCHKK-
algo are the operating system objects accessed by a malware instance, the operations

that were performed on the objects, and data flows between accesses to objects. In con-
trast, the features utilized by the plagiarism detectors weadopted here are system/API
call sequences (without specified argument values).

3.2 Results

We implemented these three plagiarism detectors by following the descriptions in the
corresponding papers and then applied the detectors to BCHKK-data (instances used
by Bayer et al. [6] on which multiple anti-virus tools agree). More specifically, each de-
tection technique produced a distance matrix; we then used single-linkage hierarchical
clustering, as is used by BCHKK-algo, to build a clusteringC, stopping the hierarchical
clustering at the point that maximizes the p-value of a chi-squared test between the dis-
tribution of sizes of the clusters inC and the cluster-size distribution that BCHKK-algo
induced on BCHKK-data.1 We then evaluated the resulting clusteringC by calculating
the precision and recall with respect to a reference clusteringD that is one of

– AV: clustering produced by multiple anti-virus tools, i.e., D in the evaluation clus-
tering (“ground truth”) in Bayer et al.’s paper [6];

– BCHKK-algo: clustering produced by the technique of Bayer et al., i.e.,C in the
evaluation in Bayer et al.’s paper [6].

To make a fair comparison, the three plagiarism detectors and BCHKK-algo obtain
system information (e.g., API call, system call, and systemobject information) from
the same dynamic traces produced by Anubis [7]. Results of the precision and recall are
shown in Table 1.

C D prec(C,D) recall(C,D) F-measure(C,D)

BCHKK-algo

AV

0.984 0.930 0.956
APISeq 0.965 0.922 0.943

API3Gram 0.978 0.927 0.952
SYS3Gram 0.982 0.938 0.960

APISeq
BCHKK-algo

0.988 0.939 0.963
API3Gram 0.989 0.941 0.964
SYS3Gram 0.988 0.938 0.963

Table 1.Applying plagiarism detectors and malware clustering on BCHKK-data

One set of experiments, shown whereD is set to the clustering results of BCHKK-
algo in Table 1, compares these plagiarism detectors with BCHKK-algo directly. The
high (especially) precisions and recalls show that the clusterings produced by these

1 More specifically, this chi-squared test was performed between the cluster-size distribution of
C and a parameterized distribution that best fit the cluster-size distribution that BCHKK-algo
induced on BCHKK-data. The parameterized distribution was Weibull with shape parameter
k = 0.4492 and scale parameterλ = 5.1084 (p-value= 0.8763).

plagiarism detectors are very similar to that produced by BCHKK-algo. A second set of
experiments, shown whereD is set to AV, compares the precisions and recalls of all four
techniques to the “ground truth” clustering of BCHKK-data.It is perhaps surprising that
SYS3Gram performed as well as it did, since a system-call-based malware clustering
algorithm [13] tested by Bayer et al. performed relatively poorly; the difference may
arise because the tested clustering algorithm employs system-call arguments, whereas
SYS3Gram does not (and so is immune to their manipulation). That issue aside, we
believe that the high precisions and recalls reported in Table 1 provide support for the
conjecture that the malware instances in the BCHKK-data dataset are likely relatively
simple ones to cluster, since plagiarism detectors, which are designed without attention
to the specific challenges presented by malware, also perform very well on them.

4 Replicating Our Analysis on a New Dataset

Emboldened by the results in Section 3, we decided to attemptto replicate the anal-
ysis of the previous section on a new dataset. Our goal was to see if another analysis
would also support the notion that selecting malware instances for which ground-truth
evidence is inferred by “voting” by anti-virus tools yieldsa ground-truth dataset that
all the tools we considered (BCHKK-algo and plagiarism detectors alike) could cluster
well.

4.1 The new dataset and BCHKK-algo clustering

To obtain another dataset, we randomly chose5, 121 instances from the collection of
malware instances from VX heavens [3]. We selected the number of instances to be
roughly twice the2, 568 instances in BCHKK-data. We submitted this set of instances
to Bayer et al., who kindly processed these instances using Anubis and then applied
BCHKK-algo to the resulting execution traces and returned to us the corresponding
distance matrix. This distance matrix covered4, 234 of the5, 121 samples; Anubis had
presumably failed to produce meaningful execution traces for the remainder.

In order to apply the plagiarism detectors implemented in Section 3 to this data, we
needed to obtain the information that each of those techniques requires, specifically the
sequences of system calls and API calls for each malware instance. As mentioned in
Section 3, we obtained this information for the BCHKK-data dataset via Anubis; more
specifically, it was already available in the BCHKK-data data files that those authors
provided to us. After submitting this new dataset to the Anubis web interface, however,
we realized that this information is not kept in the Anubis output by default. Given that
obtaining it would then require additional imposition on the Anubis operators to cus-
tomize its output and then re-submitting the dataset to obtain analysis results (a lengthy
process), we decided to seek out a method of extracting this information locally. For
this purpose, we turned to an alternative tool that we could employ locally to gener-
ate API call traces from the malware instances, namely CWSandbox [25]. CWSandbox
successfully processed (generated non-empty API call traces) for4, 468 of the5, 121
samples, including3, 841 of the4, 234 for which we had results for the BCHKK-algo
algorithm.

We then scanned each of these3, 841 instances with four anti-virus programs (Ac-
tivescan 2.0, Nod32 update 4956, Avira 7.10.06.140 and Kaspersky 6.0.2.690). Ana-
lyzing the results from these anti-virus programs, we finally obtained1, 114 malware
instances for which the four anti-virus programs reported the same family for each;
we denote these1, 114 as VXH-data in the remainder of this paper. More specifically,
each instance is given a label (e.g, Win32.Acidoor.b, BDS/Acidoor.B) when scanned by
an anti-virus program. The family name is the generalized label extracted from the in-
stance label based on the portion that is intended to be human-readable (e.g., the labels
listed would be in the “Acidoor” family). We defined a reference clusteringD for this
dataset so that two instances are in the same clusterD ∈ D if and only if all of the four
anti-virus programs concurred that these instances are in the same family.2 Our method
for assembling the reference clustering for VXH-data is similar to that used to obtain
the reference clustering of BCHKK-data [6], but is more conservative.3

We obtained the BCHKK-algo clustering of VXH-data by applying single linkage
hierarchical clustering to the subset of the distance matrix provided by Bayer et al.
corresponding to these instances. In this clustering step,we used the same parameters
as in the original paper [6]. To ensure a fair comparison withother alternatives, we
confirmed that this clustering offered the best F-measure value relative to the reference
VXH-data clustering based on the anti-virus classifications, in comparison to stopping
the hierarchical clustering at selected points sooner or later.

4.2 Validation on BCHKK-data

As discussed above, we resorted to a new tool, CWSandbox (vs. Anubis), to extract
API call sequences for VXH-data. In order to gain confidence that this change would
not greatly influence our results, we first performed a validation test, specifically to
see whether our plagiarism detectors would perform comparably on the BCHKK-data
dataset when processed using CWSandbox. In the validation test, we submitted BCHKK-
data to CWSandbox to obtain execution traces for each instance. Out of the2, 658 in-
stances in BCHKK-data, CWSandbox successfully produced traces for2, 099 of them.
Comparing the API3Gram and APISeq clusterings on these2, 099 samples, first with
reference clustering AV and then with the clustering produced using BCHKK-algo
(which, again, uses Anubis) as reference, yields the results in Table 2. Note that due to
the elimination of some instances, the reference clusterings have fewer clusters than be-
fore (e.g., AV now has 68 families instead of 84 originally).Also note that SYS3Gram
results are missing in Table 2 since CWSandbox does not provide system call infor-
mation. However, high F-measure values for the other comparisons suggest that our
plagiarism detectors still work reasonably well using CWSandbox outputs.

2 The VX heavens labels for malware instances are the same as Kaspersky’s, suggesting this is
the anti-virus engine they used to label.

3 The method by which Bayer et al. selected BCHKK-data and produced a reference cluster-
ing for it was only sketched in their paper [6], but their clarifications enabled us to perform a
comparable data selection and reference clustering process, starting from the3, 841 instances
from VX heavens successfully processed by both CWSandbox and theBCHKK-algo algo-
rithm (based on Anubis). This process retained a superset of the 1,114 instances in VXH-data
and produced a clustering of which every cluster of VXH-data is a subset of a unique cluster.

C D prec(C,D) recall(C,D) F-measure(C,D)

API3Gram
AV

0.948 0.918 0.933
APISeq 0.958 0.934 0.946

API3Gram
BCHKK-algo

0.921 0.931 0.926
APISeq 0.937 0.939 0.938

Table 2.Applying plagiarism detectors and malware clustering on BCHKK-data. API3Gram and
APISeq are based on CWSandbox traces.

4.3 Results on VXH-data

In Section 4.1 we described how we assembled the VXH-data dataset and applied
BCHKK-algo and the anti-virus tools to cluster it. We now compare the results of the
four clustering techniques run on VXH-data: AV from the anti-virus tools, API3Gram
(based on CWSandbox), APISeq (based on CWSandbox) and BCHKK-algo (based on
Anubis). Results are shown in Table 3. These results again show that the plagiarism
detectors produce comparable clustering results to BCHKK-algo when AV is the refer-
ence, offering generally greater precision, worse recall,and a similar F-measure.

C D prec(C,D) recall(C,D) F-measure(C,D)

BCHKK-algo
AV

0.604 0.659 0.630
API3Gram 0.788 0.502 0.613

APISeq 0.704 0.536 0.609
API3Gram

BCHKK-algo
0.790 0.826 0.808

APISeq 0.770 0.798 0.784

Table 3.Applying plagiarism detectors and malware clustering on VXH-data

Surprisingly, however, these measures indicate that both BCHKK-algo and our pla-
giarism detectors perform more poorly on VXH-data than theydid on BCHKK-data.
On the face of it, the results in Table 3 do not support the conjecture of Section 3,
i.e., that determining a reference clustering of malware instances based on the concur-
rence of anti-virus engines might bias the reference clustering toward easy-to-cluster
instances. After all, were this the case, we would think thatsomemethod (if not all
methods) would do well when AV is used as the reference clustering. Instead, it may
simply be the case that the plagiarism detectors and malwareclustering tools leverage
features for clustering that are more prevalent in BCHKK-data than in VXH-data. In
that case, one might thus conclude that these features are not sufficiently reliable for
use across a broad range of malware.

Of course, the results of this section must be taken as a bit more speculative, owing
to the different systems (CWSandbox and Anubis) from which the malware traces were
gathered before being consumed by the clustering techniques we consider. It is true that
there is substantial variability in the length and composition of the API sequences gath-

ered by the different tools, in some cases. For example, Figure 1 shows the CDFs of the
API call sequence lengths elicited by the different tools. As can be seen in Figure 1, no
tool was uniformly better than the other in extracting long API call sequences, though
it is apparent that the sequences they induced are very different in length.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Length of API call sequence

C
D

F

Anubis/BCHKK−data

CWSandbox/VXH−data

CWSandbox/BCHKK−data

Fig. 1. Lengths of API call sequences extracted from BCHKK-data or VXH-data datasets using
CWSandbox or Anubis. Note that x-axis is log-scale.

Another viewpoint is given in Figure 2, which shows the fraction of malware in-
stances in each dataset in which certain activities are present. While some notewor-
thy differences exist, particularly in behaviors related to network activity, it is evi-
dent that both tools elicited a range of activities from large portions of the malware
datasets. We suspect that some of the differences in frequencies of network activities
(particularly “send data” and “receive data”) result from the dearth of other malware
instances with which to communicate at the time the malware was run in CWSandbox.
Again, and despite these differences, our validation testsreported in Table 2 suggest
that the sequences induced by each tool are similarly effective in supporting clustering
of BCHKK-data.

The evidence above suggests to us that a different reason forthe relatively poor ac-
curacy of BCHKK-algo and our plagiarism detectors on VXH-data is at work. One pos-
sible contributing factor is that BCHKK-data samples within the same reference cluster
tended to produce API-call sequences of more uniform lengththan did VXH-data sam-
ples in the same reference cluster. For example, the relative standard deviation of the
API sequence lengths per cluster in BCHKK-data, averaged over all clusters, is 23.5%
and 6.9% for traces produced by Anubis and CWSandbox, respectively, while this num-
ber is 130.5% for CWSandbox traces of VXH-data. However, in the following section
we focus our attention on another explanation for the poorerclustering performance on
VXH-data versus BCHKK-data, and that we believe is more generally instructive.

Activity Searched Strings
BCHKK-data BCHKK-data VXH-data

(Anubis) (CWSandbox)(CWSandbox)
create new process “CreateProcess ” 100% 87.40% 70.80%
open reg key “RegOpenKey” 100% 95.00% 92.90%
query reg value “RegQueryValue ” 100% 94.80% 89.00%
create reg key “RegCreateKey ” 98.70% 98.20% 94.20%
set reg value “RegSetValue ” 98.30% 97.10% 80.40%
create file “CreateFile ” 100% 98.10% 80.60%
send ICMP packet “IcmpSendEcho ” 82.10% 82.60% 0.71%
try to connect “connect ”, “ WSASocket” 85.10% 89.80% 34.70%
found no host “WSAHOSTNOTFOUND” N/A 72.30% 9.06%
send data “AFD SEND”, “ socket send ” 83.10% 1.50% 14.40%
receive data “AFD RECV”, “ socket recv ” 83.20% 1.40% 14.90%

Fig. 2.Percentage of malware instances in which listed behavior is observed

5 Effects of Cluster-Size Distribution

In seeking to understand the discrepancy between the precision and recall of the BCHKK-
algo (and plagiarism-detection) clustering on the BCHKK-data (Section 3) and VXH-
data datasets (Section 4), one attribute of these datasets that stood out to us is the dis-
tribution of cluster sizes in each. Specifically, the reference clustering for the BCHKK-
data is highly biased, in that it contains two large clusterscomprising 48.5% and 27%
of the malware instances, respectively, and remaining clusters of size at most 6.7%. In
contrast, the VXH-data reference dataset is more evenly distributed; the largest cluster
in that dataset comprises only 14% of the instances. Figure 3shows the cluster size
distribution of the reference clustering of each dataset; note that the x-axis is log-scale.

10
0

10
1

10
2

10
3

10
4

0.5

0.6

0.7

0.8

0.9

1

number of instances in one cluster

C
D

F

BCHKK−data

VXH−data

Fig. 3. Reference cluster-size distribution of BCHKK-data and VXH-data. Note that x-axis is
log-scale.

The reason that cluster size distribution matters can be seen from an example of
clustering8 points in one of two extreme ways. If when clustering these8 points, the
reference clusteringD comprises two clusters, one of size7 and one of size1, then
anyother clusteringC of these8 points into two clusters of size7 and1 is guaranteed to
yield prec(C,D) andrecall(C,D) of at least7/8. If, on the other hand,D comprises two
clusters of size4 each, then another clusteringC could yieldprec(C,D) andrecall(C,D)
as low as4/8, and in fact

(

4
2

)(

4
2

)

/
(

8
4

)

= 36/70 of such clusterings do so. In this sense,
it is considerably “harder” to produce a clustering yielding good precision and recall
in the latter case, and a good precision and recall in the latter case is thus much more
significantthan in the former.

While providing insight, this combinatorial argument is toosimplistic to illustrate
the effect that cluster size distribution plays in the BCHKK-algo clustering of the VXH-
data and BCHKK-data datasets. A more direct, but still coarse, indication of this effect
can be seen by downsampling the large clusters in the BCHKK-data dataset. Specif-
ically, we randomly removed malware instances from the two largest families in the
BCHKK-data reference clustering until they were each of size 200. After re-clustering
the remaining malware instances using BCHKK-algo with the same parameters, the re-
sultingF-measure averaged over10 downsampling runs was only0.815 (versus0.956
before downsampling).

An alternative and more refined view of the effects of significance to the cluster-
ing results of BCHKK-algo for the VXH-data and BCHKK-data datasets can be seen
by illustrating the resilience of the clustering results toperturbations in the underly-
ing distance matrix. The heart of the BCHKK-algo clusteringtechnique is the distance
measure that it develops, which is tuned to measure the activities of malware. As such,
one strategy in examining the potential for bias due to cluster-size distribution is to
introduce perturbations into the original BCHKK-algo distance matrices for the VXH-
data and BCHKK-data up to some limit, re-cluster the resulting distance matrix into the
same cluster-size distribution, and evaluate the rate at which the precision and recall
drop. Intuitively, if the precision and recall drop more quickly for the VXH-data than
for the BCHKK-data, then this supports the idea that minor errors in the BCHKK-algo
distance are more amplified (in terms of the effects on precision and recall) when the
clusters are distributed as in the VXH-data than when they are distributed as in the
BCHKK-data dataset. By the contrapositive, this will show that a high precision and
recall in the VXH-data case is more significant.

In attempting to perform this analysis, however, some difficulties arise.

– The BCHKK-algo distance matrices for the VXH-data and BCHKK-data datasets
are different in that the VXH-data matrix results in precision and recall far below
that yielded by BCHKK-data. As such, the VXH-data matrix is already “decayed”
more from the best possible precision and recall than is thatfor the BCHKK-data;
introducing perturbations in an already decayed distance matrix will do little to
demonstrate the sensitivity of a highly accurate distance matrix to perturbations.
In order to start from good precision and recall, then, we adopt the testingVXH-
data matrix and BCHKK-data matrix (i.e., resulting from BCHKK-algo) as the
referencematrices, i.e., so that we start from precision and recall of1.0. We then

measure the rate of degradation from this ideal as the perturbations are introduced
into the distance matrices, compared to these references.

– When re-clustering a perturbed distance matrix, the cluster-size distribution might
be altered, in that hierarchical clustering simply might not produce an identical
cluster-size distribution as the original from the perturbed distance matrix. For this
reason, we fit a parameterized distribution to the referencecluster-size distribu-
tion and stop hierarchical clustering at the point that maximizes the p-value of a
chi-squared test between the test cluster-size distribution and the fitted reference
distribution. In general, we find that a Weibull distribution with shape parameter
k = 0.7373 and scale parameterλ = 1.9887 is a good fit for the reference cluster-
ing (i.e., the initial test clustering resulting from BCHKK-algo, as described above)
of the VXH-data dataset (p-value of0.8817), and that the corresponding values for
the BCHKK-data arek = 0.4492 andλ = 5.1084 (p-value of0.8763).

– Given that we have only a distance matrix, a method of perturbing it so that its
entries maintain properties of a distance (notably, satisfying the triangle inequality)
is necessary. To do this, we map the distance matrix into ad-dimensional space,
i.e., creatingd-dimensional points to represent the malware instances, separated
according to the distances in the matrix. To then perturb thedistances, we simply
move each point to a random spot in the ball of radiusr centered at that point.
We can then produce the corresponding distance matrix for these perturbed points,
and re-cluster. By increasingr, we then increase the maximum perturbation to the
distances.

0 .04 .08 .12 .16 .20 .24 .28 .32 .36 .40 .44 .48 .52 .56 .60 .64 .68 .72 .76 .80
0.75

0.8

0.85

0.9

0.95

1

perturbation limit (r)

F
−

m
e

a
s
u

re

BCHKK−data

VXH−data

Downsized BCHKK−data

Fig. 4. Tolerance to perturbations

The results of this analysis are shown in Figure 4. In this figure, the x-axis shows
the radiusr within which we perturbed each point from its original position in d-
dimensional space. The y-axis shows the F-measure that resulted for each radiusr,
averaged over five runs; standard deviations were negligible. As this figure shows, the
cluster-size distributions characteristic of the VXH-data were indeed more sensitive to
perturbations in the underlying data than were those characteristic of the BCHKK-data.

In addition, in Figure 5 we show the p-values of chi-squared tests comparing the cluster-
size distribution of the clustering after perturbation andthe fitted (Weibull) reference
cluster-size distribution. The fact that these p-values are not significantly decreasing in-
dicates that the cause of degradation in the F-measure was not primarily due to deviation
from the intended cluster-size distributions.

0 .04 .08 .12 .16 .20 .24 .28 .32 .36 .40 .44 .48 .52 .56 .60 .64 .68 .72 .76 .80
0.5

0.6

0.7

0.8

0.9

1

perturbation limit (r)

p
−

v
a

lu
e

BCHKK−data

VXH−data

Fig. 5.p-values for perturbation tests

We also plot a “Downsized BCHKK-data” line in Figure 4 to control for the discrep-
ancy in the number of malware instances represented in the BCHKK-data and VXH-
data datasets. To do this, we randomly removed instances from BCHKK-data (irrespec-
tive of the reference clusters in which they fall) until the size of the data set is the
same as that of VXH-data, i.e.,1, 114 instances. Using the correspondingly downsized
distance matrix, we applied hierarchical clustering usingthe same threshold to stop
clustering as reported in [6], resulting in a clustering whose cluster-size distribution has
corresponding estimated Weibull parametersk = 0.4307 andλ = 2.0399. We took this
clustering as the starting point for “Downsized” perturbation test and show the results
(averaged over 5 runs) in Figure 4. And as we can see, “Downsized” BCHKK-data is
still more immune to perturbation than VXH-data.

To further examine the effects of cluster size distributions on precision and recall,
in Figure 6 we plot the average F-measure for reference clustersD and test clustersC
whose cluster sizes are chosen from a Weibull distribution with the shape parameter
k shown on the x-axis. Once the reference and test cluster sizes are chosen (indepen-
dently), the reference and test clusters are then populatedindependently at random (i.e.,
each point is assigned to a cluster inD and a cluster inC independently). As Figure 6
shows, the F-measure that results simply from different values ofk provides further
insight into the bias that cluster size distribution can introduce.

We do not mean to suggest that the complete discrepancy between the results of the
BCHKK-algo clustering technique on the VXH-data and BCHKK-data is due solely to
the cluster size distributions underlying the two datasets. However, we do believe that
this case and our analysis of it offers sufficient evidence torecommend that evaluation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

k

F
−

m
e

a
s
u

re

λ = 2

λ = 3

λ = 4

λ = 5

Fig. 6. F-measure ofrandom test and reference clusterings with cluster sizes drawn from a
Weibull distribution with scale parameterλ ∈ [2, 5] and shape parameterk ∈ [0.2, 0.9], av-
eraged over 10 trials. Error bars show standard deviation. Note that thebest-fit(k, λ) value for
the BCHKK-data reference clustering is(0.4488, 4.8175) and for the VXH-data reference clus-
tering is(0.7803, 2.5151).

of future clustering techniques be done on datasets with a variety of cluster size distri-
butions. It is also possible that measures of cluster accuracy other than precision and
recall better avoid this source of bias. For example, Perdisci et al [15] employed an
approach based on the compactness of each cluster and the separation among different
clusters, which may be preferable.

6 Conclusion

In this paper we have reported on our investigation of the impact that ground-truth se-
lection might have on the accuracy reported for malware clustering techniques. Our
starting point was investigating the possibility that a common method of determining
ground truth, namely utilizing the concurrence of multipleanti-virus tools in classifying
malware instances, may bias the dataset toward easy-to-cluster instances. Our investi-
gation of this possibility was based on clustering using a different set of tools developed
without attention to the subtleties of malware, namely plagiarism detectors. While our
application of these tools, first to a dataset used in the evaluation of a state-of-the-art
malware clustering technique and second to a whole new malware dataset, arguably
leaves our conjecture unresolved, we believe that highlighting this possibility is impor-
tant to facilitate discussion of this issue in the community.

It has also led us to examine an issue that we believe to be important for future
analyses of malware clustering, namely the impact of the ground-truth cluster-size dis-
tribution on the significance of results suggesting high accuracy. In particular, we have

shown that the highly accurate results reported for a state-of-the-art malware classifier
(BCHKK-algo) are tempered by a reduced significance owing tohaving tested on a
dataset with a biased cluster-size distribution. We consequently recommend that future
evaluations employ data with a cluster-size distribution that is more even.

We caution the reader from drawing more conclusions from ourstudy than is war-
ranted, however. In particular, despite the similar performance of the BCHKK-algo al-
gorithm and the plagiarism detectors in clustering on the malware datasets we con-
sidered, it is not justified to conclude that these algorithms are equally effective for
malware clustering. The design of the BCHKK-algo algorithmshould make it more
difficult to evade, not to mention more scalable. It is evident, however, from our results
in Section 3 that either malware today is not designed to exploit differences in the clus-
tering abilities of BCHKK-algo and plagiarism detectors, or else that the ground-truth
selection of the test datasets eliminated malware instances that do so.

We recognize that our paper has perhaps introduced more questions than it has
definitively answered. Nevertheless, we believe that in addition to the observations
above, multiple opportunities for future research can be drawn from our investigation.
In particular, we believe our investigation underlines theimportance of further research
in malware clustering, specifically in better methods for establishing ground truth, in
identifying more reliable features for malware clustering, or in both.

AcknowledgementsWe are deeply grateful to Ulrich Bayer, Engin Kirda, Paolo Milani
Comparetti, and Christopher Kruegel for helpful assistance, for providing access to the
BCHKK-data dataset, for applying BCHKK-algo to our VXH-data dataset, for helpful
discussions, and for useful comments on drafts of this paper. This work was supported in
part by NSF award CT-0756998 and by DRTech Singapore under grant POD0814140.

References

1. Threatexpert3.http://www.threatexpert.com/ .
2. Norman sandbox center. http://www.norman.com/security_center/

security_tools/en , 2008.
3. VX Heavens.http://vx.netlux.org/ , 2010.
4. A. Aiken. Moss: a system for detecting software plagiarism.http://theory.

stanford.edu/ ˜ aiken/moss/ .
5. M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario. Automated

classification and analysis of internet malware. InProceedings of the 10th International
Symposium on Recent Advances in Intrusion Detection (RAID), 2007.

6. U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable, behavior-
based malware clustering. InProceedings of the Network and Distributed System Security
Symposium, 2009.

7. U. Bayer, C. Kruegel, and E. Kirda. Ttanalyze: A tool for analyzingmalware. In15th Euro-
pean Institute for Computer Antivirus Research (EICAR 2006) Annual Conference, 2006.

8. Commtouch, Inc. Malware outbreak trend report: Bagle/beagle.http://www.
commtouch.com/documents/Bagle-Worm_MOTR.pdf , March 2007.

9. M. Gheorghescu. An automated virus classification system. InProceedings of the Virus
Bulletin Conference (VB), 1994.

10. K. Ha. Keylogger.stawin.http://www.symantec.com/security_response/
writeup.jsp?docid=2004-012915-2315-99 .

11. X. Hu, T. Chiueh, and K.G. Shin. Large-scale malware indexing using function-call graphs.
In Proceedings of 16th ACM Conference on Computer and Communications Security, 2009.

12. T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-linguistic token-based code clone
detection system for large scale source code. InIEEE Trans. on Software Engineering, pages
654–670, 2002.

13. T. Lee and J. J. Mody. Behavioral classification. In15th European Institute for Computer
Antivirus Research (EICAR 2006) Annual Conference, 2006.

14. McAfee. W97m/opey.c.http://vil.nai.com/vil/content/v_10290.htm .
15. R. Perdisci, Wenke Lee, and Nick Feamster. Behavioral clusteringof http-based malware and

signature generation using malicious network traces. InUSENIX Symposium on Networked
Systems Design and Implementation, NSDI 2010, 2010.

16. K. Rieck, T. Holz, C. Willems, P. Dussel, and P. Laskov. Learning and classification of
malware behavior. InFifth. Conference on Detection of Intrusions and Malware and Vulner-
ability Assessment (DIMVA), 2008.

17. K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis of malware behavior using
machine learning. Technical Report 18-2009, Berlin Institute of Technology, 2009.

18. D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena. Bitblaze: A new approach to computer security via binary
analysis. InProceedings of the 4th International Conference on Information SystemsSecu-
rity, December 2008.

19. Symantec. Spyware.e2give. http://www.symantec.com/security_
response/writeup.jsp?docid=2004-102614-1006-99 .

20. Symantec. Xeram.1664. http://www.symantec.com/security_
response/writeup.jsp?docid=2000-121913-2839-99 .

21. H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. Matsumoto. Dynamic software
birthmarks to detect the theft of windows applications. InInternational Symposium on Future
Software Technology, 2004.

22. P. Tan, M. Steinbach, and V. Kumar.Introduction to Data Mining. Addison-Wesley, 2006.
23. X. Wang, Y. Jhi, S. Zhu, and P. Liu. Detecting software theft via system call based birth-

marks. InProceedings of 25th Annual Computer Security Applications Conference, 2009.
24. G. Whale. Identification of program similarity in large populations. InComputer Journal,

Special Issue on Procedural Programming, pages 140 – 146, 1990.
25. C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis using

cwsandbox. InProceedings of the 2007 IEEE Symposium on Security and Privacy (S&P07),
pages 32 – 39, 2007.

26. M. J. Wise. Detection of similarities in student programs: Yaping may bepreferable to
plagueing. InProceedings of the 23rd SIGCSE Technical Symposium, 1992.

