On Challenges in Evaluating Malware Clustering

Peng L#, Limin Liu2, Debin Gad, and Michael K. Reitér

! Department of Computer Science, University of North Carolina, CHdjtieNC, USA
2 State Key Lab of Information Security, Graduate School of Chineseléwmg of Sciences
3 School of Information Systems, Singapore Management UniveSiitgapore

Abstract. Malware clustering and classification are important tools that enable
analysts to prioritize their malware analysis efforts. The recent emeeg# fully
automated methods for malware clustering and classification that ta@gbrac-
curacy suggests that this problem may largely be solved. In this papeepert

the results of our attempt to confirm our conjecture that the method otisejec
ground-truth data in prior evaluations biases their results toward highaycu

To examine this conjecture, we apply clustering algorithms from a diffeten
main (plagiarism detection), first to the dataset used in a prior worklsi&ian

and then to a wholly new malware dataset, to see if clustering algorithms de-
veloped without attention to subtleties of malware obfuscation are nelesshe
successful. While these studies provide conflicting signals as to the tmssc

of our conjecture, our investigation of possible reasons uncoverbglieve, a
cautionary note regarding thegnificanceof highly accurate clustering results,
as can be impacted by testing on a dataset with a biased cluster-size distributio

Keywords: malware clustering and classification, plagrardetection

1 Introduction

The dramatic growth of the number of malware variants hasvated methods to clas-
sify and group them, enabling analysts to focus on the tredy anes. The need for such
classification and pruning of the space of all malware vasiaunderlined by, e.g., the
Bagle/Beagle malware, for which roughly 30,000 distinatiasats were observed be-
tween January 9 and March 6, 2007 [8]. While initial attemptaalware classification
were performed manually, in recent years numeutsmatednethods have been de-
veloped to perform malware classification (e.g., [11, 6659113, 15]). Some of these
malware classifiers have claimed very good accuracy inifyass malware, leading
perhaps to the conclusion that malware classification isroofess solved.

In this paper, we show that this may not be the case, and thatating automated
malware classifiers poses substantial challenges that evde&equire renewed at-
tention from the research community. A central challenginad with the dearth of a
well-defined notion of when two malware instances are then&eor “different”, it is
difficult to obtain ground truth to which to compare the réswalf a proposed classifier.
Indeed, even manually encoded rules to classify malwanase®t to be enough —
a previous study [6] found that a majority of six commerciali&irus scanners con-
curred on the classification of 14,212 malware instancesiy 2,658 cases. However,

in the absence of better alternatives for determining giawmath, such instances and
their corresponding classifications are increasingly ueeevaluate automated meth-
ods of malware clustering. For example, a state-of-theaattvare clustering algorithm
due to Bayer et al. [6] achieved excellent results usingett®e658 malware instances
as ground truth; i.e., the tool obtained results that Igrggreed with the clustering of
these 2,658 malware instances by the six anti-virus tools.

The starting point of the present paper is the possibiligy,conjectured, that one
factor contributing to these strong results might be thesé2,658 instances are simply
easy to classify, by any of a variety of techniques. We reporbur efforts to exam-
ine this possibility, first by repeating the clustering ofsle instances using algorithms
from an ostensibly different domain, namely plagiarisiedgdrs that employ dynamic
analysis. Intuitively, since plagiarism detectors areefigved without attention to the
specifics of malware obfuscation, highly accurate clusterésults by these tools might
suggest that this method of selecting ground-truth datselithe data toward easy-to-
classify instances. We describe the results of this arglygiich indicate that plagia-
rism detectors have nearly the same success in clustegsg thalware instances, thus
providing tentative support for this conjecture.

To more thoroughly examine this possibility, we then atterdgo repeat the evalu-
ation methodology of Bayer et al. on a new set of malware int&s. By drawing from
a database of malware instances, we assembled a set forfahicnti-virus tools con-
sistently labeled each member. We detail this study andtepdts results that, much
to our surprise, find that neither the Bayer et al. techniquethme plagiarism detectors
we employed were particularly accurate in clustering thiestances. Due to certain
caveats of this evaluation that we will discuss, this evédmais materially different
from that for the previous dataset, causing us to be somet@htdtive in the conclu-
sions we draw from it. Nevertheless, these results tempecdnfidence with which
we caution that the selection of ground-truth data baseti®@rdancurrence of multiple
anti-virus tools biases the data toward easy-to-class#ftances.

But this leaves the intriguing question: Why the differersiiés on the two datasets?
We complete our paper with an analysis of a factor that, wews| contributes to
(though does not entirely explain) this discrepancy, arad e believe offers a cau-
tionary note for the evaluation of malware clustering resurhis factor is the makeup
of the ground-truth dataset, in terms of the distributiornthe# sizes of the malware
families it contains. We observe that the original datasetwhich the algorithms we
consider perform well, is dominated by two large familiest the second dataset is
more evenly distributed among many families. We show thiat fdctor alone biases
the measures used in comparing the malware clustering oiatplie dataset families,
specifically precision and recall, in that it increases ikelihood of good precision
and recall numbers occurring by chance. As such, the bidsstécsize distribution in
the original dataset erodes thignificance(c.f., [22, Section 8.5.8]) of the high preci-
sion and recall reported by Bayer et al. [6]. This observatige believe, identifies an
important factor for which to control when measuring theeefiveness of a malware
clustering technique.

While we focus on a single malware classifier for our analy§jis/fe do so because
very good accuracy has been reported for this algorithm anduse the authors of that

technique were very helpful in enabling us to compare widirttechnique. We hasten
to emphasize, moreover, that our comparisons to plagiatitectors are not intended
to suggest that plagiarism detectors are the equal of ttimique. For one, we believe
the technique of Bayer et al. is far more scalable than angeptagiarism detectors
that we consider here, an important consideration whenesing potentially tens of
thousands of malware instances. In addition, the similaurcy of the technique of
Bayer et al. to the plagiarism detectors does not rule oupdissibility that the plagia-
rism detectors are more easily evaded (in the sense of dihiig clustering accuracy);
rather, it simply indicates that malware today does not sieetio so. We stress that the
issues we identify are not a criticism of the Bayer et al. téghe, but rather are issues
worth considering for any evaluation of malware clusteringl classification.

To summarize, the contributions of this paper are as folldvirst, we explore the
possibility that existing approaches to obtaining grotnutl data for malware cluster-
ing evaluation biases results by isolating those instatttatsare simple to cluster or
classify. In the end, we believe our study is inconclusivétasitopic, but that reporting
our experiences will nevertheless raise awareness of tissilplity and will underline
the importance of finding methods to validate the grounthtdata employed in this
domain. Second, we highlight the importance of #ignificanceof positive cluster-
ing results when reporting them. This has implications far dlatasets used to evalu-
ate malware clustering algorithms, in that it requires thathsets exhibiting a biased
cluster-size distribution not be used as the sole vehiclevaluating a technique.

2 Classification and Clustering of Malware

To hinder static analysis of binaries, the majority of catnmalware makes use of ob-
fuscation techniques, notably binary packers. As suchaayn analysis of such mal-
ware is often far more effective than static analysis. Maniig the behavior of the
binary during its execution enables collecting a profilehaf dperations that the binary
performs and offers potentially greater insight into thdecdtself if obfuscation is re-
moved (e.g., the binary is unpacked) in the course of runiting/hile this technique
has its limitations — e.g., it may be difficult to induce céntbehaviors of the malware,
some of which may require certain environmental condittoreccur [10, 14, 19, 20] —
it nevertheless is more effective than purely static apghvea. For this reason, dynamic
analysis of malware has received much attention in the relsemmmunity. Analysis
systems such as CWSandbox [25], Anubis [7], BitBlaze [18];\an [2] and Threat-
Expert [1] execute malware samples within an instrumeni®it@enment and monitor
their behaviors for analysis and development of defensdnaresms.

A common application for dynamic analysis of malware is tougr malware in-
stances, so as to more easily identify the emergence of mamstof malware, for
example. Such grouping is often performed using machinaileg, either bycluster-
ing (e.g., [6,17, 15]) or byclassification(e.g., [13, 5, 16, 11]), which are unsupervised
and supervised techniques, respectively.

Of primary interest in this paper are the methodologiestthede works employ to
evaluate the results of learning, and specifically the nmeasof quality for the clus-
tering or classification results. L&t/ denote a collection ofn malware instances to

be clustered, or the “test data” in the case of classificatietC = {C;}1<i<. and

D = {D,;}1<i<q be two partitions ofM, and letf : {1...¢} — {1...d} and

g :{l...d} — {1...c} be functions. Many prior techniques evaluated their rgsult
using two measures:

prec(C,D) = Z|C N Dy

recall(C, D) Z|Cﬂ(N D,

whereC is the set of clusters resulting from the technique beinduetad andD is the
clustering that represents the “right answer”.

More specifically, in the case of classificatiar, is all test instances classified as
classi, andD; is all test instances that are “actually” of clasé\s such, in the case of
classificationc = d and f andg are the identity functions. As a resuitec(C, D) =
recall(C, D), and this measure is often simply referred t@asuracy This is the mea-
sure used by Rieck et al. [16] to evaluate their malware iflagsand Lee et al. [13]
similarly useserror rate, or one minus the accuracy.

In the clustering case, there is no explicit label to defiredluster inD that corre-
sponds to a specific cluster@h and so one approach is to define

f(i) = argmax |C; N Dy |

g(i) = argmax |Cy N D;|
1//

In this case,f and g will not generally be the identity function (or even bijemts),
and so precision and recall are different. This approactsésl by Rieck et al. [17]
and Bayer et al. [6] in evaluating their clustering techeisjuln this case, when it is
desirable to reduce these two measures into one, a commooagpp(e.g., [17]) is to
use the F-measure:

2 - prec(C, D) - recall(C, D)
prec(C, D) + recall(C, D)

F-measure(C, D) =

This background is sufficient to highlight the issues on Wwhie focus in the paper:

Production ofD: A central question in the measurement of precision andIrisdabw

the reference clusterin@ is determined. A common practice is to use an existing anti-
virus tool to label the malware instancés (e.g., [16, 13, 11]), the presumption being
that anti-virus tools embody hand-coded rules to label ragdvinstances and so are a
good source of “manually verified” ground truth. Unfortuslgf existing evidence sug-
gests otherwise, in that it has been shown that anti-virgises often disagree on their
labeling (and clustering) of malware instances [5]. To cengate for this, another prac-
tice has been to restrict attention to malware instaidesn which multiple anti-virus
tools agree (e.g., [6]). Aside from substantially reducing number of instances, we
conjecture that this practice might contribute to more fatate evaluations of malware

classifiers, essentially by limiting evaluations to easyiuster instances. To demon-
strate this possibility, in Section 3 we consider malwasténces selected in this way
and show that they can be classified by plagiarism detealessgned without attention

to the subtleties of malware obfuscation) with precisiod egcall comparable to that

offered by a state-of-the-art malware clustering tool.

Distribution of cluster sizes i€ and D: In order to maximize both precision and
recall (and hence the F-measure), it is necessarg tordD to exhibit similar cluster-
size distributions; i.e., if one of them is highly biasea (i has few, large clusters) and
the other is more evenly distributed, then one of precisioreoall will suffer. Even
when they exhibit similar cluster-size distributions, lewer, the degree to which that
distribution is biased has an effect on thignificance(e.g., [22, Section 8.5.8]) that
one can ascribe to high values of these measures. Inforrtalgignificance of a given
precision or recall is related to the probability that thidue could have occurred by
random chance; the higher the probability, the less thefiignce. We will explore the
effect of cluster-size distribution on significance, anddfically the impact of cluster-
size distribution on the sensitivity of the F-measure tatyrbations in the distance
matrix from which the clustering is derived. We will see that all other factors held
constant, good precision and recall when the referencéectum D are of similar size
is more significant than if the cluster sizes are biased. iBhamall perturbations in the
distance matrix yielding tends to decay precision and recall more thal @ndC are
highly biased.

We will demonstrate this phenomenon using the malwareedfingt results obtained
from the state-of-the-art malware clustering tool due tyd3aet al., which obtains
very different results on two malware datasets, one wittghliibiased clustering and
one with a more even clustering. While this is not the only sewf variation in the
datasets, and so the different results cannot be attrilzatety to differences in cluster
size distributions, we believe that the cluster size digtion is a factor that must be
taken into account when reporting malware clustering tesul

3 A Potential Hazard of Anti-Virus Voting

As discussed in Section 2, a common practice to produce thengdrtruth reference
clusteringD for evaluating malware clustering algorithms is to use texgsanti-virus
tools to label the malware instances and to restrict atierith malware instances/
on which multiple anti-virus tools agree. The starting pahour study is one such
ground-truth dataset, here denoted BCHKK-data, that wed lng Bayer et al. for eval-
uating their malware clustering technique [6]. Using thisaget, their algorithm, here
denoted BCHKK-algo, yielded a very good precision and tecél0.984 and0.930,
respectively). BCHKK-data consists Bf658 malware instances, which is a subset of
14, 212 malware instances contributed between October 27, 200damdary 31, 2008
by a number of security organizations and individuals, spapa wide range of sources
(such as web infections, honeypots, botnet monitoring,ciher malware analysis ser-
vices). Bayer et al. ran six different anti-virus programmstbesel4,212 instances,
and a subset df, 658 instances on which results from the majority of these aintisv

programs agree were chosen to form BCHKK-data for evaloatiotheir clustering
technigue BCHKK-algo. Bayer et al. explained that such astutvas chosen because
they are the instances on which ground truth can be obtaohesl to agreement by a
majority of the anti-virus programs they used).

This seems to be a natural way to pitk for evaluation, as they are the only ones
for which the ground-truth clustering (i.€D) could be obtained with good confidence.
However, this also raises the possibility that the instarmewhich multiple anti-virus
tools agree are just the malware instances that are rdla@asy to cluster, while the
difficult-to-cluster instances are filtered out&f. If this were the case, then this could
contribute to the high precision and recall observed forBRHKK-data dataset, in
particular.

Unfortunately, we are unaware of any accepted methodologietting this possi-
bility directly. So, we instead turn to another class of tduisg tools derived without
attention to malware clustering, in order to see if they dne o cluster the malware
instances in BCHKK-data equally well. Specifically, we applagiarism detectors to
the BCHKK-data to see if they can obtain good precision anélte

3.1 Plagiarism detectors

Plagiarism detection is the process of detecting that@ustivithin a work are not orig-
inal to the author of that work. One of the most common use®ftfvare plagiarism
detection is to detect plagiarism in student submissionmdgramming classes (e.g.,
Moss [4], Plaque [24], and YAP [26]). Software plagiarisntedgion and malware clus-
tering are related to one another in that they both attemgétect some degree of sim-
ilarity in software programs among a large number of ingtanélowever, due to the
unigueness of malware samples compared to software pregrageneral (e.g., in us-
ing privileged system resources) and due to the degree afohfion typically applied
to malware instances, we did not expect plagiarism detet¢toproduce good results
when clustering malware samples.

Here we focus on three plagiarism detectors that monitoanhya executions of
a program. We do not include those applying static analysikrtiques as they are
obviously not suitable for analyzing (potentially packemglware instances.

— APISeq: This detector, proposed by Tamada et al. [21], coaspthe similarity
of the sequences of API calls produced by two programs torméte if one is
plagiarized from the other. Similarity is measured by usstring matching tools
such as diff and CCFinder [12].

— SYS3Gram: In this detector, due to Wang et al. [23], shortisages (specifically,
triples) of system calls are used as “birthmarks” of progga®imilarity is mea-
sured as the Jacaard similarity of the birthmarks of the namog being compared,
i.e., as the ratio between the sizes of two sets: (i) thesatgion of the birthmarks
from the two programs, and (ii) the union of the birthmarlsfrthe two programs.

— API3Gram: We use the same idea as in SYS3Gram and apply it tc@R to
obtain this plagiarism detector.

We emphasize that the features on which these algorithrestd@tigiarism are dis-
tinct from those employed by BCHKK-algo. Generally, thetteas adopted in BCHKK-
algo are the operating system objects accessed by a makegtamde, the operations

that were performed on the objects, and data flows betweesses to objects. In con-
trast, the features utilized by the plagiarism detectorad@pted here are system/API
call sequences (without specified argument values).

3.2 Results

We implemented these three plagiarism detectors by fatiguie descriptions in the
corresponding papers and then applied the detectors to BGit#a (instances used
by Bayer et al. [6] on which multiple anti-virus tools agrelpre specifically, each de-
tection technique produced a distance matrix; we then ugsetedinkage hierarchical
clustering, as is used by BCHKK-algo, to build a clusteihgtopping the hierarchical
clustering at the point that maximizes the p-value of a cfuissed test between the dis-
tribution of sizes of the clusters thand the cluster-size distribution that BCHKK-algo
induced on BCHKK-data.We then evaluated the resulting clusterihgy calculating
the precision and recall with respect to a reference clngtd? that is one of

— AV: clustering produced by multiple anti-virus tools, |.® in the evaluation clus-
tering (“ground truth”) in Bayer et al.’s paper [6];

— BCHKK-algo: clustering produced by the technique of Bayale i.e.,C in the
evaluation in Bayer et al.'s paper [6].

To make a fair comparison, the three plagiarism detectaB&@HKK-algo obtain
system information (e.g., API call, system call, and systdject information) from
the same dynamic traces produced by Anubis [7]. Resultegtécision and recall are
shown in Table 1.

| C [D [prec(C,D)[recaII(C,D)[F-measure(c,D)‘
BCHKK-algo 0.984 0.930 0.956
APISeq AV 0.965 0.922 0.943
API3Gram 0.978 0.927 0.952
SYS3Gram 0.982 0.938 0.960
APISeq 0.988 0.939 0.963
API3Gram |BCHKK-algo| 0.989 0.941 0.964
SYS3Gram 0.988 0.938 0.963

Table 1. Applying plagiarism detectors and malware clustering on BCHKK-data

One set of experiments, shown whébés set to the clustering results of BCHKK-
algo in Table 1, compares these plagiarism detectors witHRCalgo directly. The
high (especially) precisions and recalls show that thetetirgys produced by these

! More specifically, this chi-squared test was performed between thieckige distribution of
C and a parameterized distribution that best fit the cluster-size distributibB@taKK-algo
induced on BCHKK-data. The parameterized distribution was Weibull witpstparameter
k = 0.4492 and scale parametar= 5.1084 (p-value= 0.8763).

plagiarism detectors are very similar to that produced biHR&-algo. A second set of
experiments, shown whefeis set to AV, compares the precisions and recalls of all four
techniques to the “ground truth” clustering of BCHKK-ddtas perhaps surprising that
SYS3Gram performed as well as it did, since a system-cakkdanalware clustering
algorithm [13] tested by Bayer et al. performed relativebogy; the difference may
arise because the tested clustering algorithm employsraysall arguments, whereas
SYS3Gram does not (and so is immune to their manipulationt Tssue aside, we
believe that the high precisions and recalls reported ineTalprovide support for the
conjecture that the malware instances in the BCHKK-datasgdtare likely relatively
simple ones to cluster, since plagiarism detectors, whieldasigned without attention
to the specific challenges presented by malware, also pesfery well on them.

4 Replicating Our Analysis on a New Dataset

Emboldened by the results in Section 3, we decided to att¢éongplicate the anal-

ysis of the previous section on a new dataset. Our goal wasetdf sinother analysis
would also support the notion that selecting malware iresgtarior which ground-truth

evidence is inferred by “voting” by anti-virus tools yieldsground-truth dataset that
all the tools we considered (BCHKK-algo and plagiarism dites alike) could cluster

well.

4.1 The new dataset and BCHKK-algo clustering

To obtain another dataset, we randomly chbsE1 instances from the collection of
malware instances from VX heavens [3]. We selected the numwbimstances to be
roughly twice the2, 568 instances in BCHKK-data. We submitted this set of instances
to Bayer et al., who kindly processed these instances usimgi& and then applied
BCHKK-algo to the resulting execution traces and returredd the corresponding
distance matrix. This distance matrix covere@34 of the5, 121 samples; Anubis had
presumably failed to produce meaningful execution traoethie remainder.

In order to apply the plagiarism detectors implemented ittiSe 3 to this data, we
needed to obtain the information that each of those teclesigequires, specifically the
sequences of system calls and API calls for each malwaraniost As mentioned in
Section 3, we obtained this information for the BCHKK-datdaset via Anubis; more
specifically, it was already available in the BCHKK-dataadfites that those authors
provided to us. After submitting this new dataset to the Aaukeb interface, however,
we realized that this information is not kept in the Anubisput by default. Given that
obtaining it would then require additional imposition ore tAnubis operators to cus-
tomize its output and then re-submitting the dataset toiobiaalysis results (a lengthy
process), we decided to seek out a method of extractingrfosniation locally. For
this purpose, we turned to an alternative tool that we conigley locally to gener-
ate API call traces from the malware instances, namely CW8an[25]. CWSandbox
successfully processed (generated non-empty API cakd)dor4, 468 of the 5,121
samples, including, 841 of the 4, 234 for which we had results for the BCHKK-algo
algorithm.

We then scanned each of theéls&41 instances with four anti-virus programs (Ac-
tivescan 2.0, Nod32 update 4956, Avira 7.10.06.140 and &akp 6.0.2.690). Ana-
lyzing the results from these anti-virus programs, we finalbtained1, 114 malware
instances for which the four anti-virus programs reportegl $ame family for each;
we denote theseg, 114 as VXH-data in the remainder of this paper. More specifically
each instance is given a label (e.g, Win32.Acidoor.b, B@x8i8or.B) when scanned by
an anti-virus program. The family name is the generalizédllextracted from the in-
stance label based on the portion that is intended to be huezaiable (e.g., the labels
listed would be in the “Acidoor” family). We defined a refecenclusteringD for this
dataset so that two instances are in the same clisterD if and only if all of the four
anti-virus programs concurred that these instances aheisame family.Our method
for assembling the reference clustering for VXH-data isilsinto that used to obtain
the reference clustering of BCHKK-data [6], but is more eamative®

We obtained the BCHKK-algo clustering of VXH-data by applyisingle linkage
hierarchical clustering to the subset of the distance matrovided by Bayer et al.
corresponding to these instances. In this clustering stepjsed the same parameters
as in the original paper [6]. To ensure a fair comparison wither alternatives, we
confirmed that this clustering offered the best F-measuteevelative to the reference
VXH-data clustering based on the anti-virus classificatjon comparison to stopping
the hierarchical clustering at selected points soonerter.la

4.2 Validation on BCHKK-data

As discussed above, we resorted to a new tool, CWSandbox (ugig), to extract
API call sequences for VXH-data. In order to gain confidemad this change would
not greatly influence our results, we first performed a vdéilishatest, specifically to
see whether our plagiarism detectors would perform congharm the BCHKK-data
dataset when processed using CWSandbox. In the validatigmie submitted BCHKK-
data to CWSandbox to obtain execution traces for each inst&nat of the2, 658 in-
stances in BCHKK-data, CWSandbox successfully producegsréor2, 099 of them.
Comparing the API3Gram and APISeq clusterings on ti2e889 samples, first with
reference clustering AV and then with the clustering predlasing BCHKK-algo
(which, again, uses Anubis) as reference, yields the esullable 2. Note that due to
the elimination of some instances, the reference clugisiiave fewer clusters than be-
fore (e.g., AV now has 68 families instead of 84 originalk)so note that SYS3Gram
results are missing in Table 2 since CWSandbox does not mrayidtem call infor-
mation. However, high F-measure values for the other coismas suggest that our
plagiarism detectors still work reasonably well using CWBox outputs.

2 The VX heavens labels for malware instances are the same as Kagpesaggesting this is
the anti-virus engine they used to label.

3 The method by which Bayer et al. selected BCHKK-data and produceteeence cluster-
ing for it was only sketched in their paper [6], but their clarifications éethlns to perform a
comparable data selection and reference clustering process, stestmthe3, 841 instances
from VX heavens successfully processed by both CWSandbox anBGkr#KK-algo algo-
rithm (based on Anubis). This process retained a superset of thé ihdtances in VXH-data
and produced a clustering of which every cluster of VXH-data is a $ubseunique cluster.

| C [D [prec(C, D)]recall(C, D)|F-measure(C, D)]

APISGran] 0948 | 0918 0.933
APISeq 0.958 | 0.934 0.946
API3Gran] 0921 | 0931 0.926
APISeq |CCHKK-aIg0| 557 | (939 0.938

Table 2. Applying plagiarism detectors and malware clustering on BCHKK-datd3@&Pam and
APISeq are based on CWSandbox traces.

4.3 Results on VXH-data

In Section 4.1 we described how we assembled the VXH-datasdaiand applied
BCHKK-algo and the anti-virus tools to cluster it. We now qaeme the results of the
four clustering techniques run on VXH-data: AV from the aritus tools, API3Gram
(based on CWSandbox), APISeq (based on CWSandbox) and BChtitKizased on
Anubis). Results are shown in Table 3. These results agaiw #hat the plagiarism
detectors produce comparable clustering results to BCHIg¢-when AV is the refer-
ence, offering generally greater precision, worse reaall, a similar F-measure.

l C ‘ D ‘prec(C, D)‘recaII(C7 D)‘F-measure(c, D)‘
BCHKK-algo 0.604 | 0.659 0.630
API3Gram AV 0.788 | 0.502 0.613
APISeq 0.704 | 0.536 0.609
API3Gram 0.790 | 0.826 0.808
APISeq |BCHKK-algol 200 | (708 0.784

Table 3. Applying plagiarism detectors and malware clustering on VXH-data

Surprisingly, however, these measures indicate that bGtHHK-algo and our pla-
giarism detectors perform more poorly on VXH-data than tieyon BCHKK-data.
On the face of it, the results in Table 3 do not support the exnje of Section 3,
i.e., that determining a reference clustering of malwastainces based on the concur-
rence of anti-virus engines might bias the reference dimgteoward easy-to-cluster
instances. After all, were this the case, we would think gwahemethod (if not all
methods) would do well when AV is used as the reference dinstelnstead, it may
simply be the case that the plagiarism detectors and maleWaseering tools leverage
features for clustering that are more prevalent in BCHKKadhan in VXH-data. In
that case, one might thus conclude that these features amafficiently reliable for
use across a broad range of malware.

Of course, the results of this section must be taken as a v speculative, owing
to the different systems (CWSandbox and Anubis) from whiemtialware traces were
gathered before being consumed by the clustering techsigaeonsider. It is true that
there is substantial variability in the length and composibf the API sequences gath-

ered by the different tools, in some cases. For exampler&iyshows the CDFs of the
API call sequence lengths elicited by the different tools.c&n be seen in Figure 1, no
tool was uniformly better than the other in extracting longlAall sequences, though
it is apparent that the sequences they induced are verydtiffe length.

Anubis/BCHKK-data
= = = CWSandbox/VXH-data
' CWSandbox/BCHKK-data

L L L
10° 10° 10*
Length of API call sequence

Fig. 1. Lengths of API call sequences extracted from BCHKK-data or VXlthdfatasets using
CWSandbox or Anubis. Note that x-axis is log-scale.

Another viewpoint is given in Figure 2, which shows the fractof malware in-
stances in each dataset in which certain activities areepte$Vhile some notewor-
thy differences exist, particularly in behaviors relatednetwork activity, it is evi-
dent that both tools elicited a range of activities from &mprtions of the malware
datasets. We suspect that some of the differences in fretgseaf network activities
(particularly “send data” and “receive data”) result frohe tdearth of other malware
instances with which to communicate at the time the malwae mun in CWSandbox.
Again, and despite these differences, our validation tegierted in Table 2 suggest
that the sequences induced by each tool are similarly eféeict supporting clustering
of BCHKK-data.

The evidence above suggests to us that a different reastimefoelatively poor ac-
curacy of BCHKK-algo and our plagiarism detectors on VXHedia at work. One pos-
sible contributing factor is that BCHKK-data samples wittiie same reference cluster
tended to produce API-call sequences of more uniform lethgth did VXH-data sam-
ples in the same reference cluster. For example, the relatandard deviation of the
API sequence lengths per cluster in BCHKK-data, averaged al/ clusters, is 23.5%
and 6.9% for traces produced by Anubis and CWSandbox, regglgctvhile this num-
ber is 130.5% for CWSandbox traces of VXH-data. However, efthlowing section
we focus our attention on another explanation for the podeestering performance on
VXH-data versus BCHKK-data, and that we believe is more gaheinstructive.

Activity Searched Strings BCHKK-data BCHKK-data| VXH-data
(Anubis) |(CWSandboxYCWSandbox)

create new process CteateProcess 100% 87.40% 70.80%
open reg key RegOpenKey” 100% 95.00% 92.90%
guery reg value RegQueryValue ” 100% 94.80% 89.00%
create reg key RegCreateKey ” 98.70% 98.20% 94.20%
set reg value RegSetValue " 98.30% 97.10% 80.40%
create file CreateFile ” 100% 98.10% 80.60%
send ICMP packet ItmpSendEcho ” 82.10% 82.60% 0.71%
try to connect tonnect ", “WSASocket” 85.10% 89.80% 34.70%
found no host WSAHOSNOTFOUND N/A 72.30% 9.06%
send data AFD.SEND, “socket _send”| 83.10% 1.50% 14.40%
receive data AFDRECV, “socket _recv "| 83.20% 1.40% 14.90%

Fig. 2. Percentage of malware instances in which listed behavior is observed

5 Effects of Cluster-Size Distribution

In seeking to understand the discrepancy between the jneeisd recall of the BCHKK-
algo (and plagiarism-detection) clustering on the BCHKa¢ed(Section 3) and VXH-

data datasets (Section 4), one attribute of these datasetstdod out to us is the dis-
tribution of cluster sizes in each. Specifically, the refeeclustering for the BCHKK-

data is highly biased, in that it contains two large clustensiprising 48.5% and 27%
of the malware instances, respectively, and remainingeis®f size at most 6.7%. In
contrast, the VXH-data reference dataset is more eventilaised; the largest cluster
in that dataset comprises only 14% of the instances. Figwsieo®ds the cluster size
distribution of the reference clustering of each datasak that the x-axis is log-scale.

0.6

—— BCHKK-data
- - - VXH-data

10°

10°

number of instances in one cluster

Fig. 3. Reference cluster-size distribution of BCHKK-data and VXH-data. No& xkaxis is

log-scale.

The reason that cluster size distribution matters can be em an example of
clustering8 points in one of two extreme ways. If when clustering thg@gmints, the
reference clusterin@ comprises two clusters, one of siZeand one of sizd, then
anyother clustering of these8 points into two clusters of siZéand1 is guaranteed to
yield prec(C, D) andrecall(C, D) of at leastr/8. If, on the other hand) comprises two
clusters of size each, then another clusteri@gould yieldprec(C, D) andrecall(C, D)
as low ast/8, and in fact(3) (3)/(}) = 36/70 of such clusterings do so. In this sense,
it is considerably “harder” to produce a clustering yiefflijood precision and recall
in the latter case, and a good precision and recall in therlattse is thus much more

significantthan in the former.

While providing insight, this combinatorial argument is tsimplistic to illustrate
the effect that cluster size distribution plays in the BCHElgo clustering of the VXH-
data and BCHKK-data datasets. A more direct, but still aadralication of this effect
can be seen by downsampling the large clusters in the BCH#ts-dataset. Specif-
ically, we randomly removed malware instances from the targdst families in the
BCHKK-data reference clustering until they were each of 8. After re-clustering
the remaining malware instances using BCHKK-algo with dias parameters, the re-
sulting F-measure averaged ovet0 downsampling runs was only815 (versusD.956
before downsampling).

An alternative and more refined view of the effects of sigaifice to the cluster-
ing results of BCHKK-algo for the VXH-data and BCHKK-datatdsets can be seen
by illustrating the resilience of the clustering resultsperturbations in the underly-
ing distance matrix. The heart of the BCHKK-algo clusteriaghnique is the distance
measure that it develops, which is tuned to measure thatadiof malware. As such,
one strategy in examining the potential for bias due to elusize distribution is to
introduce perturbations into the original BCHKK-algo diste matrices for the VXH-
data and BCHKK-data up to some limit, re-cluster the resgltlistance matrix into the
same cluster-size distribution, and evaluate the rate athathe precision and recall
drop. Intuitively, if the precision and recall drop more cjly for the VXH-data than
for the BCHKK-data, then this supports the idea that minoorsrin the BCHKK-algo
distance are more amplified (in terms of the effects on piatiand recall) when the
clusters are distributed as in the VXH-data than when theydistributed as in the
BCHKK-data dataset. By the contrapositive, this will shdwtta high precision and
recall in the VXH-data case is more significant.

In attempting to perform this analysis, however, some diffies arise.

— The BCHKK-algo distance matrices for the VXH-data and BCHH#ta datasets
are different in that the VXH-data matrix results in presisand recall far below
that yielded by BCHKK-data. As such, the VXH-data matrix lieady “decayed”
more from the best possible precision and recall than isftliahe BCHKK-data;
introducing perturbations in an already decayed distanatixnwill do little to
demonstrate the sensitivity of a highly accurate distana&imto perturbations.
In order to start from good precision and recall, then, wepadae testingVXH-
data matrix and BCHKK-data matrix (i.e., resulting from BKKtalgo) as the
referencematrices, i.e., so that we start from precision and recall.6f We then

measure the rate of degradation from this ideal as the jpations are introduced
into the distance matrices, compared to these references.

— When re-clustering a perturbed distance matrix, the chster distribution might
be altered, in that hierarchical clustering simply might pooduce an identical
cluster-size distribution as the original from the peradhlistance matrix. For this
reason, we fit a parameterized distribution to the referahegter-size distribu-
tion and stop hierarchical clustering at the point that mmézés the p-value of a
chi-squared test between the test cluster-size distobwthd the fitted reference
distribution. In general, we find that a Weibull distributivith shape parameter
k = 0.7373 and scale parametar= 1.9887 is a good fit for the reference cluster-
ing (i.e., the initial test clustering resulting from BCHK#go, as described above)
of the VXH-data dataset (p-value 08817), and that the corresponding values for
the BCHKK-data aré: = 0.4492 and\ = 5.1084 (p-value 0f0.8763).

— Given that we have only a distance matrix, a method of peirtgrii so that its
entries maintain properties of a distance (notably, satigfthe triangle inequality)
is necessary. To do this, we map the distance matrix infedanensional space,
i.e., creatingd-dimensional points to represent the malware instancesratd
according to the distances in the matrix. To then perturtditiances, we simply
move each point to a random spot in the ball of radiusntered at that point.
We can then produce the corresponding distance matrix ésetperturbed points,
and re-cluster. By increasing we then increase the maximum perturbation to the
distances.

0.95f

0.9+

F-measure

0.85f

— BCHKK-data ~
0.8+ = = = VXH-data 4
""" Downsized BCHKK-data A

0.75

T T T T T E R R T RO B
0 .04 .08 .12 .16 .20 .24 28 .32 .36 .40 .44 48 .52 .56 .60 .64 .68 .72 .76 .80
perturbation limit (r)

Fig. 4. Tolerance to perturbations

The results of this analysis are shown in Figure 4. In thisrégthe x-axis shows
the radiusr within which we perturbed each point from its original pasitin d-
dimensional space. The y-axis shows the F-measure thdteggar each radius,
averaged over five runs; standard deviations were negighs this figure shows, the
cluster-size distributions characteristic of the VXHalatere indeed more sensitive to
perturbations in the underlying data than were those ctexristic of the BCHKK-data.

In addition, in Figure 5 we show the p-values of chi-squaeststcomparing the cluster-
size distribution of the clustering after perturbation ahd fitted (Weibull) reference
cluster-size distribution. The fact that these p-valuesat significantly decreasing in-
dicates that the cause of degradation in the F-measure wpamarily due to deviation
from the intended cluster-size distributions.

p-value

0.7 b

0.6 — BCHKK-data
= = = VXH-data

05 T T T R SO N N Y R
0 .04 .08 .12 .16 .20 .24 .28 .32 .36 .40 .44 .48 .52 .56 .60 .64 .68 .72 .76 .80
perturbation limit (r)

Fig. 5. p-values for perturbation tests

We also plot a “Downsized BCHKK-data” line in Figure 4 to cantffor the discrep-
ancy in the number of malware instances represented in th¢KBGdata and VXH-
data datasets. To do this, we randomly removed instancesB@HKK-data (irrespec-
tive of the reference clusters in which they fall) until tHeesof the data set is the
same as that of VXH-data, i.€., 114 instances. Using the correspondingly downsized
distance matrix, we applied hierarchical clustering udimg same threshold to stop
clustering as reported in [6], resulting in a clustering gfocluster-size distribution has
corresponding estimated Weibull parameters 0.4307 and\ = 2.0399. We took this
clustering as the starting point for “Downsized” pertuibattest and show the results
(averaged over 5 runs) in Figure 4. And as we can see, “Do@dSBCHKK-data is
still more immune to perturbation than VXH-data.

To further examine the effects of cluster size distributiom precision and recall,
in Figure 6 we plot the average F-measure for referenceatkBtand test cluster§
whose cluster sizes are chosen from a Weibull distributigth the shape parameter
k shown on the x-axis. Once the reference and test clustes aizechosen (indepen-
dently), the reference and test clusters are then poputadegendently at random (i.e.,
each point is assigned to a clusterfimand a cluster it independently). As Figure 6
shows, the F-measure that results simply from differenieslof% provides further
insight into the bias that cluster size distribution camndadtice.

We do not mean to suggest that the complete discrepancy &etive results of the
BCHKK-algo clustering technique on the VXH-data and BCHKlKta is due solely to
the cluster size distributions underlying the two dataddtsvever, we do believe that
this case and our analysis of it offers sufficient evidenaetommend that evaluation

0.6

[C I RN

[]
|
05 = —_
/

1N
IS

F—measure
o
&

I
[N}

0.1

0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 6. F-measure ofandomtest and reference clusterings with cluster sizes drawn from a
Weibull distribution with scale parameter € [2,5] and shape parametér € [0.2,0.9], av-
eraged over 10 trials. Error bars show standard deviation. Note thaegidit(k, \) value for

the BCHKK-data reference clustering(i8.4488, 4.8175) and for the VXH-data reference clus-
tering is(0.7803,2.5151).

of future clustering techniques be done on datasets withiatyaf cluster size distri-

butions. It is also possible that measures of cluster acgusther than precision and
recall better avoid this source of bias. For example, Perdisal [15] employed an

approach based on the compactness of each cluster and #rats@pamong different
clusters, which may be preferable.

6 Conclusion

In this paper we have reported on our investigation of theaichthat ground-truth se-
lection might have on the accuracy reported for malwaretetirsy techniques. Our
starting point was investigating the possibility that a coom method of determining
ground truth, namely utilizing the concurrence of multipigi-virus tools in classifying
malware instances, may bias the dataset toward easy4tecinstances. Our investi-
gation of this possibility was based on clustering usingfeint set of tools developed
without attention to the subtleties of malware, namely j@lagm detectors. While our
application of these tools, first to a dataset used in theuatiah of a state-of-the-art
malware clustering technique and second to a whole new maldataset, arguably
leaves our conjecture unresolved, we believe that higtifigtihis possibility is impor-
tant to facilitate discussion of this issue in the community

It has also led us to examine an issue that we believe to berfendor future
analyses of malware clustering, namely the impact of themptetruth cluster-size dis-
tribution on the significance of results suggesting highugacy. In particular, we have

shown that the highly accurate results reported for a sththe-art malware classifier
(BCHKK-algo) are tempered by a reduced significance owingaeing tested on a
dataset with a biased cluster-size distribution. We camsetly recommend that future
evaluations employ data with a cluster-size distributhuat is more even.

We caution the reader from drawing more conclusions fromstudy than is war-
ranted, however. In particular, despite the similar penfance of the BCHKK-algo al-
gorithm and the plagiarism detectors in clustering on thémare datasets we con-
sidered, it is not justified to conclude that these algorghare equally effective for
malware clustering. The design of the BCHKK-algo algoritehould make it more
difficult to evade, not to mention more scalable. It is evidaowever, from our results
in Section 3 that either malware today is not designed tocéixgifferences in the clus-
tering abilities of BCHKK-algo and plagiarism detectors etse that the ground-truth
selection of the test datasets eliminated malware instathed do so.

We recognize that our paper has perhaps introduced mordiangeshan it has
definitively answered. Nevertheless, we believe that initetdto the observations
above, multiple opportunities for future research can lasvdrfrom our investigation.
In particular, we believe our investigation underlinesithportance of further research
in malware clustering, specifically in better methods famkbshing ground truth, in
identifying more reliable features for malware clusteriagin both.

Acknowledgement8Ve are deeply grateful to Ulrich Bayer, Engin Kirda, Paoldavii
Comparetti, and Christopher Kruegel for helpful assistafar providing access to the
BCHKK-data dataset, for applying BCHKK-algo to our VXH-dalataset, for helpful
discussions, and for useful comments on drafts of this papé work was supported in
part by NSF award CT-0756998 and by DRTech Singapore undet §OD0814140.

References

[EY

. Threatexpert3http://www.threatexpert.com/ .
2. Norman sandbox center. http://www.norman.com/security_center/
security_tools/en , 2008.

3. VX Heavenshttp://vx.netlux.org/ , 2010.
4. A. Aiken. Moss: a system for detecting software plagiarisnnttp://theory.
stanford.edu/ ~ aiken/moss/

5. M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. JahaniathJahazario. Automated
classification and analysis of internet malware. Pimceedings of the 10th International
Symposium on Recent Advances in Intrusion Detection (RROD)/.

6. U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. KifSealable, behavior-
based malware clustering. Froceedings of the Network and Distributed System Security
Symposiun2009.

7. U. Bayer, C. Kruegel, and E. Kirda. Ttanalyze: A tool for analyzimgware. In15th Euro-
pean Institute for Computer Antivirus Research (EICAR 2006) Annuafeence 2006.

8. Commtouch, Inc. Malware outbreak trend report: Bagle/beaglbttp://www.
commtouch.com/documents/Bagle-Worm_MOTR.pdf , March 2007.

9. M. Gheorghescu. An automated virus classification systenPrdoeedings of the Virus
Bulletin Conference (VB)YL994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

K. Ha. Keylogger.stawin.http://www.symantec.com/security_response/
writeup.jsp?docid=2004-012915-2315-99

X. Hu, T. Chiueh, and K.G. Shin. Large-scale malware indexsiggufunction-call graphs.
In Proceedings of 16th ACM Conference on Computer and Communicagensity 2009.

T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-linguisticeiotbased code clone
detection system for large scale source cod¢EEE Trans. on Software Engineerinuages
654-670, 2002.

T. Lee and J. J. Mody. Behavioral classification.15th European Institute for Computer
Antivirus Research (EICAR 2006) Annual Conferera96.

McAfee. W97m/opey.chttp://vil.nai.com/vil/content/v_10290.htm

R. Perdisci, Wenke Lee, and Nick Feamster. Behavioral clustefigp-based malware and
signature generation using malicious network traceJENIX Symposium on Networked
Systems Design and Implementation, NSDI 2@000.

K. Rieck, T. Holz, C. Willems, P. Dussel, and P. Laskov. Learning @assification of
malware behavior. Ififth. Conference on Detection of Intrusions and Malware and Vulner-
ability Assessment (DIMVA2008.

K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis ofwaaé behavior using
machine learning. Technical Report 18-2009, Berlin Institute of Telcyy, 2009.

D. Song, D. Brumley, H. Yin, J. Caballero, |. Jager, M. G. Kafgliang, J. Newsome,
P. Poosankam, and P. Saxena. Bitblaze: A new approach to compateitys via binary
analysis. InProceedings of the 4th International Conference on Information Sys$ems-
rity, December 2008.

Symantec. Spyware.e2give. http://www.symantec.com/security_
response/writeup.jsp?docid=2004-102614-1006-99
Symantec. Xeram.1664. http://www.symantec.com/security _

response/writeup.jsp?docid=2000-121913-2839-99

H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. Mat:tonDynamlc software
birthmarks to detect the theft of windows applicationdniternational Symposium on Future
Software Technology004.

P. Tan, M. Steinbach, and V. Kumémtroduction to Data Mining Addison-Wesley, 2006.
X. Wang, Y. Jhi, S. Zhu, and P. Liu. Detecting software theft videsyscall based birth-
marks. InProceedings of 25th Annual Computer Security Applications Confer2068.

G. Whale. ldentification of program similarity in large populationsCbmputer Journal,
Special Issue on Procedural Programmjmages 140 — 146, 1990.

C. Willems, T. Holz, and F. Freiling. Toward automated dynamic nmaveaalysis using
cwsandbox. IfProceedings of the 2007 IEEE Symposium on Security and PrivacyQB&P
pages 32 — 39, 2007.

M. J. Wise. Detection of similarities in student programs: Yaping mayprbérable to
plagueing. InProceedings of the 23rd SIGCSE Technical Sympqsi@®2.

