
Bridging the Gap between Data-flow and Control-flow Analysis
for Anomaly Detection∗

Peng Li
University of North Carolina at Chapel Hill

pengli@email.unc.edu

Hyundo Park
Korea University, Seoul, Korea

hyundo95@korea.ac.kr

Debin Gao
Singapore Management University, Singapore

dbgao@smu.edu.sg

Jianming Fu
Wuhan University, Wuhan, China

jmfu@whu.edu.cn

Abstract

Host-based anomaly detectors monitor the control-flow
and data-flow behavior of system calls to detect intrusions.
Control-flow-based detectors monitor the sequence of sys-
tem calls, while data-flow-based detectors monitor the data
propagation among arguments of system calls. Besides
pointing out that data-flow-based detectors can be layered
on top of control-flow-based ones (or vice versa) to improve
accuracy, there is a large gap between the two research di-
rections in that research along one direction had been fairly
isolated and had not made good use of results from the other
direction.

In this paper, we show how data-flow analysis can lever-
age results from control-flow analysis to learn more accu-
rate and useful rules for anomaly detection. Our results
show that the proposed control-flow-analysis-aided data-
flow analysis reveals some accurate and useful rules that
cannot be learned in prior data-flow analysis techniques.
These relations among system call arguments and return
values are useful in detecting many real attacks. A trace-
driven evaluation shows that the proposed technique enjoys
low false-alarm rates and overhead when implemented on
a production server.

1 Introduction

Many host-based anomaly detectors have been proposed
to monitor system calls. Some of these detectors [5–8, 13,

∗This research was mostly done when the first two authors, Peng Li
and Hyundo Park, were researchers working in Singapore Management
University. The project was partially supported by NSF China under the
agreement 90718005, and by MIC Korea under the ITRC support program
supervised by IITA (IITA-2008-(C1090-0801-0016)) and the IT R&D pro-
gram of MKE/IITA (2008-S-026-01).

17, 19, 20] monitor the sequence of system calls emitted by
the application and utilize control-flow information of the
system calls for intrusion detection. Control-flow-based de-
tectors have been shown to be effective in detecting intru-
sions, e.g., code-injection attacks, because many such in-
trusions change the control flow of the program to make
additional system calls.

Some detectors [2, 11, 15, 16], on the other hand, moni-
tor the arguments of system calls and use the data-flow in-
formation for intrusion detection. Monitoring system call
arguments has the advantage of detecting more stealthy at-
tacks that do not change the control flow of the program
but merely change system call arguments. Despite the suc-
cess of many data-flow techniques, research has not been
done on how data-flow analysis can leverage the results
from control-flow analysis to detect intrusion. Bhatkar [2]
pointed out that making use of control-flow context can help
learning data-flow properties, but all it does was to make
use of the program counter information to differentiate in-
structions at different locations in a program. To show how
control-flow information could give further help in data-
flow analysis, please refer to a simple example in Figure 1.

fd = open(dir, "r");
read(fd, buf, size);

Block A

fd1 = open(dir1, "r");
fd2 = open(dir2, "w");
read(fd1, buf, size);
write(fd2, buf, size);

Block B

fd1 = open(dir1, "r");
if (need_to_write)
fd2 = open(dir2, "w");

read(fd1, buf, size);
if (need_to_write)
write(fd2, buf, size);

Block C

Figure 1. Control-flow information helps data-
flow analysis

2008 Annual Computer Security Applications Conference

1063-9527/08 $25.00 © 2008 IEEE

DOI 10.1109/ACSAC.2008.17

392

2008 Annual Computer Security Applications Conference

1063-9527/08 $25.00 © 2008 IEEE

DOI 10.1109/ACSAC.2008.17

392

Figure 1 shows a simple example with three blocks of
source code. When executing Block A, the first argument
of system call read always equals to the return value of
its immediate preceding system call open. This is a very
nice and useful rule that most of the existing techniques can
learn. However, when Block B executes, the same rule does
not apply, as the first argument of read now equals to its
second preceding open. If both Block A and Block B are
in the program to be monitored, training will be confused as
the rules are valid with low probabilities.

A simple solution is to combine the two rules to be a
single one, i.e., the first argument of read equals to either
the first or the second preceding open. However, this re-
sults in a less precise rule and gives attackers more room to
get evaded. Another solution is to use the different program
counter values for the instructions in Block A and Block B
to differentiate the two read system calls, so that a differ-
ent rule can be used for each block. However, this simple
solution will not work in cases where program counter val-
ues cannot differentiate the two cases, e.g., in Block C.

The example shown in Figure 1 motivates the idea that
control-flow information is very important in learning data-
flow relations in system call arguments and return values. In
general, the same system call may have very different data-
flow properties when used in different context, and this con-
text information may not be available by simply examining
the program counter values. Therefore, we need a better
way of making use of control-flow information in order to
perform data-flow analysis with improved accuracy.

In this paper, we introduce the first technique in lever-
aging results from control-flow analysis for the purpose of
data-flow analysis for intrusion detection. In short, control-
flow analysis helps putting each system call into the context
of performing some individual task. We then learn data-
flow relations among the arguments and return values of the
system calls based on the different context in which the sys-
tem calls are made. We design three Rule Sets to capture
these relations: Rule Set A contains rules that reveal the
argument and return value relations when the process be-
ing monitored is performing a particular task; Rule Set B
exploits rules that govern the system calls when the pro-
cess is performing the same task repeatedly; and Rule Set
C reflects the argument and return value behavior when the
process being monitored is performing different tasks.

In our trace-driven evaluation using logs from a produc-
tion web server, we show that the proposed technique can
not only detect real attacks, but learn useful rules for intru-
sion detection that cannot be learned in prior approaches.
False-alarm rates of our system are shown to be low in our
trace-driven evaluation. We further perform evaluations on
the convergence of the training process and the overhead ex-
perienced when using our system in real-time monitoring.

The organization of the rest of the paper is as follows.

In Section 2, we present the motivations of our technique.
The details of the design of our system are presented in Sec-
tion 3. Section 4 shows the evaluation results. Finally, we
show some related work in Section 5 and conclude with fu-
ture work in Section 6.

2 Motivations of our technique

Figure 1 shows that context information from control-
flow analysis is needed in learning the data-flow relations
among system call arguments and return values. Such con-
text information can be obtained via static analysis of the
source or binary, or from dynamic analysis of executions of
the program. In this paper, we restrict ourselves to dynamic
analysis, because of not only its wide applicability in most
environments and its simplicity in the analysis, but also its
accuracy in learning relations governing normal executions
(instead of all possible executions in static analysis) of the
program. We leave using static analysis as future work.

Control-flow-based detectors using dynamic analysis
have proposed using real-time information, e.g., program
counters, call stack, to learn the context of a system call [5,
7,8,13]. However, as pointed out in Section 1 using the code
segment in Block C in Figure 1, the context information we
need in learning data-flow relations is not readily available
from this information. Intuitively, the context information
needed is about program behavior before and after the sys-
tem call is made. In other words, it is about the sub-task the
program is performing when the system call is made.

Sliding window [6] of system calls is a relatively close
fit to what we need. It provides the context information
about system calls made before and after the system call
under analysis, and could be used to differentiate the two
cases in Block C of Figure 1. However, variable-length
patterns extracted from system call sequences more natu-
rally reflect the behavior of an application than fixed-length
patterns [8, 19, 20]. Intuitively, each such variable-length
pattern corresponds to a task performed by the application.
For example, the system call read in the two cases shown
in Block C of Figure 1 will fall into two different variable-
length patterns. Another advantage of using variable-length
patterns is that these patterns can be extracted without
knowing the actual task each pattern is performing. Tech-
niques for extracting these patterns are based on dynamic
learning and have been used successfully in a number of
host-based intrusion detection systems [8–10, 19, 20].

Since each system call pattern corresponds to a task per-
formed by the application, there will be strong relations
among arguments of system calls within a single pattern.
E.g., system calls may be made within a single pattern to
open a file and read from it. File descriptors used in the
open and read system calls may have to be equal. Sys-
tem calls from two patterns may be related as well, where

393393

the two patterns could be repetitions of the same pattern, or
they could be different patterns. An example of the former
case could be that a system call pattern is used to read one
block of data, and this pattern needs to be performed re-
peatedly in order to read a large portion of the data. The file
descriptors used in the repeating system call patterns may
have to be the same. An example of the latter case could be
that one system call pattern of reading a file is followed by
another pattern to close the file, in which the file descriptors
must be the same, too. Although we have been using the file
descriptor example so far, there are many other examples:
directories may share the same prefix in their paths within
one system call pattern, the return value of a system call in
a pattern may be used as an argument of a system call in
another pattern, etc.

Motivated by the above observations, we define three
Rule Sets to capture the relations among system call argu-
ments and return values using the context information from
variable-length patterns:

1. Rule Set A contains rules that reveal the argument and
return value relations among system calls within one
system call pattern, i.e., rules governing the system
call behavior when the process being monitored is per-
forming an individual task. An example of these rules
could be: the return value of the first system call of a
pattern must be the same as the second argument of the
second system call.

2. Rule Set B exploits rules that govern the system calls
from repeating system call patterns, i.e., when the pro-
cess is performing the same task repeatedly. It may
contain rules such as: for each repeated appearance of
a pattern , the value of the first argument of the third
system call must be greater than its value in the previ-
ous appearance by 1.

3. Rule Set C reflects the behavior of system calls from
different patterns, i.e., when the process being moni-
tored is performing different tasks. An example of the
rules might be: the return value of the second system
call in one pattern and the first argument of the third
system call in another pattern must have the same value
when these two patterns appear consecutively.

Rules in each of these three Rule Sets are learned using
techniques inspired by association rule mining [1, 21]. We
present the details of learning rules in the next Section.

3 Relations mining

In this section, we describe in detail the relations min-
ing in system call arguments and return values by using the
context information obtained from the variable-length sys-
tem call patterns. We first give an overview in Section 3.1,

followed by the extraction of system call patterns using
control-flow analysis (Section 3.2). We then describe the
relations our system is capable of learning and how they are
learned (Section 3.3). Finally we show the on-line monitor-
ing using our system in Section 3.4.

3.1 Overview

The input training data, which contains the system
call sequences (along with arguments and return values)
recorded when the application is running in a benign envi-
ronment, is first passed to a pattern extraction engine to do
control-flow analysis. The engine analyzes the sequences
and outputs a set of patterns (system call subsequences) and
a representation of the training data using these patterns.
After that, three types of rules are learned by applying rela-
tions mining techniques. Finally, rules learned are used for
online monitoring of the application.

3.2 System call patterns via control-flow
analysis

The control-flow analysis techniques we use consists of
the Teiresias algorithm [12] and a pattern reduction algo-
rithm [20]. These algorithms have been used successfully
in many projects for improving the intrusion detection sys-
tems [8–10, 19, 20]. Note that other techniques for extract-
ing patterns can be used as well. Intuitively, each pattern
extracted corresponds to a task performed by the program.
Table 1 shows an pattern example which is composed of
three system calls. Note that although the training data con-
tains information of the system call arguments and return
values, the control-flow analysis we perform here makes use
of only the system call numbers to extract patterns.

syscall No. 168 003 078
syscall name poll read gettimeofday

Table 1. Systems calls in a pattern

With the system call patterns found, the system call se-
quences in the training data can be represented in terms of
the patterns and the corresponding system calls, as well as
the arguments and return values of the system calls in the
patterns. For simplicity, we call arguments and return value
of a system call attributes in the rest of this paper.

3.3 Relations and relations mining

With pattern extraction, each system call in the training
data falls in a particular pattern, which provides the context
information for us to do more accurate relations mining. In
this subsection, we show how the relations among system
call arguments and return values are learned by using this

394394

information. We first group system call arguments and re-
turn values based on their data types. We then present our
generalized form for the rules and the three Rule Sets. In-
spired by association rule mining techniques [1,21], we im-
plement two evaluations on each rule learned to filter out
rules that may cause too many false positives or negatives.

3.3.1 Macro-Types

Intuitively, only relations between two attributes of the same
data type are useful. E.g., the relation between the value of
an int and a char is not very meaningful. However, after
checking the 111 distinct data types from the 324 system
calls defined in Linux kernel 2.6.22, we realized that sys-
tem call arguments of two different data types might be re-
lated as well. For example, the data type of the return value
of system call open is a long, which is a file descriptor;
while file descriptors in system calls read and write are
defined as unsigned int. This suggests that some con-
solidation of the 111 data types is required. For this purpose
and to simplify our analysis, we group the large number
of data types into a small number of “Macro-Types”. Any
attributes with the same Macro-Type are considered com-
parable and their relations are candidate rules to be learned.
Table 2 shows the 5 Macro-Types we define, as well as some
of their members (originally defined data types).

Macro-Type Data types defined in Linux kernel 2.6.22

Integer long, int, unsigned int, unsigned long, size t, pid t, etc.
Integer* int user *, time t user *, old sigset t user *, etc.
String* char user *, const char user *, etc.
Struct* struct old kernel stat user *, struct tms user *, etc.
Others struct pt regs, void user *, sighandler t, etc.

Table 2. Five Macro-Types in our system

Table 3 show the same system call pattern as shown in
Table 1 before and after the consolidation of data types, re-
spectively. Note that each system call has 6 attributes as-
sociated, out of which one is used to represent the return
address (attr0) and the other 5 are used to represent the first
5 arguments of the system call1. We fill an unused attributes
with “null” if there are less than 5 arguments.

3.3.2 Expressions, operators, and statements

A simple example of the relations that we want to learn
could be of the form “The first attribute of one system call
in a particular system call pattern equals to the second at-
tribute of another system call in another pattern”. We call
this simple relation a statement. Within a statement, we call

1Of the 324 system calls defined in the Linux kernel 2.6.22, only 8 of
them have more than 5 arguments yet are rarely seen in our training data.
We do not examine these additional system call arguments in this project
since the small number of appearances does not suffice to reveal any rule.

the attributes expressions and the relation (e.g., “equal”) an
operator. To show the expressiveness of the relations our
system is able to learn, we describe what expressions, oper-
ators, and statements are in this subsection.

An expression (denoted e) could be either an attribute
(denoted a) or a constant (denoted c). A statement (denoted
s) defines the relation between two expressions, where the
relation is defined by an operator (denoted o). Simple oper-
ators include equal to, not equal to, greater than, less than
and etc. Note that a statement can only be formed by two
expressions that are comparable using a corresponding op-
erator. Two expressions are comparable if they are of the
same Macro-Type (Section 3.3.1), and in order to simplify
our system, we only define 5 Macro-Types as shown in Ta-
ble 2. Two statements and a logical operator could be used
to form another statement, e.g., “the first attribute equals 1
AND the second attribute equals 2”. In summary,

a ::= attribute

c ::= constant

e ::= a|c
o ::= equal|greater than|AND|GIVEN|etc.

s ::= e o e|s o s

We also allow functions to be defined. A function takes
in an expression as input and outputs another expression.
E.g., a function can be used to find the substring, which,
in turn, can help to form a statement that two string ex-
pressions share the same prefix. Another very important
use of functions is to dereference a pointer. In many cases
it will make more sense to compare the data that the at-
tributes point to instead of comparing the attributes them-
selves. E.g., a function can be defined to dereference a par-
ticular member in a structure.

Functions are very flexible and can help describe a wide
variety of relations, although here we do not discuss further
on other possible formats a function can take.

3.3.3 Three Rule Sets

System call patterns provide the context information for us
to differentiate the same system call in different execution
context (different patterns). Attributes in a statement may
belong to system calls in the same pattern, in the repeated
occurrences of one pattern, or in different patterns. We clas-
sify statements into three different Rule Sets that represent
different types of relations among system calls.

Relations in different Rule Sets may play different roles
in detecting intrusions. For example, in a particular pro-
gram, training may reveal that attributes of system calls
within the same pattern are closely related, whereas in an-
other program, attributes of system calls from repeating pat-
terns may have stronger relations. By classifying relations

395395

Before Consolication After Consolication
syscall Number 168 003 078 168 003 078

syscall name poll read gettimeofday poll read gettimeofday

attr0 long size t long Integer Integer Integer
attr1 struct pollfd user* unsigned int struct timeval user* Struct* Integer Struct*
attr2 unsigned int char* struct timezone user* Integer String* Struct*
attr3 long size t null Integer Integer null
attr4 null null null null null null
attr5 null null null null null null

Table 3. System call arguments and return values before and after data type consolidation

into different Rule Sets, we may assign different weights to
them for online monitoring, though we leave it as our future
work and in the implementation in Section 4, we assign the
same weights to simplify our system.

Rule Set A contains statements in which attributes be-
long to system calls in the same pattern. Recall that a sys-
tem call pattern corresponds to the performance of a single
task by the application. System call made within one pattern
are closely related to one another as they are steps in per-
forming the same task. Statements in Rule Set A represent
the relations among these system calls. A typical example
of such statement could be

P [i].S[j].A[k] = P [i].S[j′].A[k′]

where P [i] denotes a particular pattern we extract from sys-
tem call sequences (i is just an index to denote different pat-
terns), P [i].S[j] denotes the jth system call of pattern P [i],
and P [i].S[j].A[k] denotes the kth attribute of P [i].S[j]
(A[0] represents the return value).

Rule Set B contains statements in which attributes be-
long to system calls in repeated occurrences of a pattern. It
is very common that the same system call pattern is used
repeatedly to perform a long task. E.g., a system call pat-
tern may be used to read a small portion of data, and such
pattern needs to be used repeatedly in order to read data
from a large file. In these cases, there is also close relations
among the attributes of system calls from repeated patterns.
A typical example of statements in Rule Set B could be

Occm
P [i].S[j].A[k] = c1 GIVEN Occm−1

P [i].S[j].A[k] = c2

where Occm
P [i].S[j].A[k] denotes the mth occurrence of

P [i].S[j].A[k]. This statement says that if the kth attribute
of the system call P [i].S[j] equals to c2, then the same at-
tribute of the same system call in the next occurrence of the
pattern must equal to c1.

Rule Set C contains statements in which attributes be-
long to system calls in different patterns. These statements
are used to govern system calls from different patterns that
are closely related. Intuitively, although one system call
pattern corresponds to a particular task to be performed, in
many cases a complicated task has to be done by a sequence

of patterns. Attributes in these patterns could be highly cor-
related, and we use Rule Set C to represent them. A typical
example of statements in Rule Set C could be

P [i].S[j].A[k] dist= P [i′].S[j′].A[k′](dist < maxdist)

where dist represents the number of patterns between P [i]
and P [i′] in the system call sequence, and maxdist is a
threshold denoting the maximum distance between the two
patterns where the statement is valid.

3.3.4 Minimum support and confidence level

Many statements can be found from a small size of train-
ing data. However, many of them may not be reliable and
may cause false positives and false negatives. We define two
thresholds to filter out statements that are not very reliable.

As in association rule mining process, two measure-
ments support and confidence are calculated for each rule.
In our system, the support of a statement is the number of
times a statement is found valid in the training data. We
define a threshold minsup to specify the lower bound of the
support for a statement to be accepted in our Rule Sets. The
confidence of a statement is (conditional) probability that
the statement is found valid in the training data.

The values of minsup and minconf play an important
role in tuning the intrusion detection system to have the
right trade-off between false positives and false negatives.
It is not our objective to propose comprehensive techniques
for finding the right values for these two thresholds in this
paper. However, we provide our evaluation results in Sec-
tion 4 with our choice of the thresholds to demonstrate the
detection capability of our system.

For our rule generation, we first match the attributes in
pairs when two system calls are from a single pattern, from
repeating occurrences of a pattern, or from two different
patterns. A pair of attributes can form a simple statement
with a specific operator. We calculate the support and con-
fidence level by checking the relation between the values of
the two attributes involved in the statement. We accept a
statement with support and confidence over the thresholds
minsup and minconf as a rule in our model and add it to
the corresponding Rule Set. These simple statements are

396396

then further extended to form more complicated statements
following the format s o s, and the support and confidence
level are measured similarly to decide if the newly formed
statements should be accepted or not. The iterative process
of forming more and more complicated statements will stop
when these two levels drop below the thresholds.

3.4 Online monitoring

Relations learned can be used for online monitoring. The
online monitor intercepts system calls made by the process
in real time, and analyzes the system call along with its ar-
guments and return value. Once our detection system rec-
ognizes one pattern from the system call sequence, we test
the arguments and return values on all the rules with this
pattern involved in three Rule Sets we constructed during
the training. An alarm will be raised when the cumulative
number of abnormal behavior reaches a previously defined
threshold. We present the experimental results for measur-
ing the online monitoring overhead in Section 4.6.

4 Evaluation

In this section, we first present our experimental setup
and some examples of relations learned in each Rule Set
(Section 4.1). In Section 4.2, we show that our system is
capable of detecting real attacks with a couple of examples.
The advantages of our technique when compared with prior
ones are shown in Section 4.3. In particular, we show that
our technique is able to learn data-flow properties that can-
not be learned by previous data-flow analysis techniques.
The performance of our system, including the false alarm
rate, speed of convergence, as well as the overhead in on-
line monitoring are presented in the last three subsections.

4.1 Experimental setup and relations
learned

4.1.1 Experimental setup

Our system was implemented on a desktop computer with
Linux kernel 2.6.22 that has 324 system calls defined. We
used Apache2 to host an http server to simulate the
web server of Singapore Management University. We mod-
ified the Linux kernel to intercept system calls made by
the Apache2 web server to obtain real-time system call
information including the system call numbers, arguments
and return values. The static web pages on the Singapore
Management University web server were downloaded and
hosted on our web server. We then made use of the web logs
from the real server to replay requests from August 2007 to
December 2007.

In this part of the evaluation, we replayed 3 days (typi-
cal weekdays) of logs that contain 372, 940 http requests,
and extracted 89 system call patterns which can cover all
the system call sequences in the training data. We group
the 111 data types for the system call arguments and return
values into 5 Macro-Types as shown in Table 2. One of the
simplest form of expressions and statements is used in this
evaluation to show the effectiveness of our system. State-
ments we use are of the form

s ::= f(a1) = f(a2)

That is, we try to find rules that govern the equality of
(some property, defined by function f(), of) two system call
attributes. Function f() does simple dereferencing when
the attributes being examined are either integer pointers or
string pointers.

We are interested in finding statements in all the three
Rule Sets, and let maxdist = 10 in finding rules in Rule Set
C. Different settings of minsup and minconf are used in our
evaluation to shed light on the settings of the thresholds.

4.1.2 Number of statements in each Rule Set

Figure 2 shows the number of rules learned in each Rule Set
for a number of different settings of minsup and minconf.

minsup = 0
minsup = 10
minsup = 50
minsup = 100

1.00.80.60.40.20
0

101

102

103

104

minconfN
um

be
r o

f S
ta

te
m

en
ts

(a) Rule Set A

minsup = 0
minsup = 10
minsup = 50
minsup = 100

1.00.80.60.40.20
0

200

400

600
700

minconf
 N

um
be

r o
f S

ta
te

m
en

ts

(b) Rule Set B

minsup = 0
minsup = 10
minsup = 50
minsup = 100

1.00.80.60.40.20
0

101

102
103

104
105

106

minconf

N
um

be
r o

f S
ta

te
m

en
ts

(c) Rule Set C

Figure 2. Number of rules learned

From the 4 settings of minsup, we can see that the set-
ting of minsup is effective in filtering out statements that
have less coverage in the training data, i.e., when minsup in-
creases, the number of statements drops significantly. When
looking at different settings of minconf, we realize that
the setting does not have a significant effect except when
minsup = 0. In particular, when both minsup and minconf
are 0, our system learns a large number of statements which
are not useful (their confidence level is 0). However, the
relatively stable results with different settings of minconf
when minsup �= 0 suggest that many of the statements
learned by our system with nonzero support have confi-
dence level of 1, which are very reliable rules.

4.1.3 Rule examples

Here we show some examples of the statements found.

397397

Rule Set A The following is an example of statements
found in Rule Set A with a support of 8, 544 and confidence
level of 1.0, which says that within the particular pattern
P [7], the second argument of the 5th system call must be
equal to the return value of the 2nd system call.

P [7].S[2].A[0] = P [7].S[5].A[2]

The details of the pattern P [7] is shown as below:

P[7]: stat64 open socketcall writev sendfile64
socketcall read write close

By analyzing the system calls in P [7], we find that this
system call pattern is probably involved in a file sending
process. After examining the system call attributes, we find
that the second argument of system call sendfile64 is
defined as an int, while the system call open returns a
file descriptor, despite that it is defined as a long.

Rule Set B We find another statement about pattern No.7
in Rule Set B as follows with support of 8, 543 and confi-
dence level of 1.0.

Occm
P [7].S[7].A[1] = Occm−1

P [7].S[7].A[1]

This statement says that when pattern P [7] is used repeat-
edly, the 1st argument of read (the 7th system call) must
not change.

Rule Set C We get the following statement in Rule Set C

P [88].S[2].A[1] dist=0= P [1].S[4].A[1]

with support of 230 and confidence level of 1.0, where
dist = 0 means that pattern P [88] follows pattern P [1] im-
mediately.

System calls in pattern P [88] and pattern P [1] are pre-
sented in the expressions below respectively.

P[88]: poll sendfile64 read write close
P[1] : stat64 open socketcall writev sendfile64

socketcall

This statement says that when P [88] follows P [1] imme-
diately, the 1st argument of the system call sendfile64
in P [88] is the same as the 1st argument of the system call
writev in P [1].

The above examples show that our system is able to learn
important and meaningful rules that govern the system call
arguments and return values. However, we also find some
less useful statements, e.g.,

Occm
P [7].S[9].A[0] = Occm−1

P [7].S[9].A[0]

in Rule Set B. The fact is, system call close (the 9th sys-
tem call in pattern P [7]) always returns a value 0 when it

succeeds. This statement is less useful because it does not
express a unique feature of the system calls made by the ap-
plication being monitored. However, it is still a valid and
good statement in the sense that it makes mimicry attacks
more difficult because the attackers need to make sure that
this particular system call returns the right value to avoid
being detected. In contrast, attackers are free to make null
system calls in a mimicry attack [8, 18].

4.2 Real attacks detection

To show the effectiveness of our approach in attack de-
tection, in this subsection we give two examples to demon-
strate the capability of our system of detecting real attacks.
We then show in Section 4.3 that some relations learned by
our system is useful in enhancing the accuracy of the detec-
tion system, which cannot be learned with prior approaches.
For each of the attacks shown in this subsection, we trained
the programs involved with benign input to learn relations
in the three Rule Sets, and then ran the exploits and checked
for the violation of the rules learned.

4.2.1 Attacks on file descriptors

The fact that programs may make assumptions about the
meanings of file descriptors, e.g., the descriptor 2 corre-
sponds to stderr, may render the programs vulnerable
to some simple exploits. Chen [3] described in detail a
program with such a vulnerability which contains the code
fragment as shown in Figure 3.

fd = open("/etc/passwd");
str = read_from_user();
fprintf(stderr, "The user entered: \n%s\n", str);

Figure 3. The stderr attack

If the attacker closes stderr before executing this pro-
gram, an open of “/etc/passwd” will return the file descrip-
tor to both fd and stderr. Subsequently, fprintf will
write user input data into the password file.

Our system is capable of recognizing the frequently used
system call pattern open, read, write and generat-
ing a rule saying that the return value of system call open
must be not equal to the first argument of system call
write. The above mentioned attack was detected by our
system as it violated the rule learned.

4.2.2 Directory traversal attacks

A buffer overflow in the GHTTPD web server may be used
by the attacker to evade path checking and execute a mali-
cious program [4]. Consider the code fragment in function
serverconnection as presented in Figure 4.

398398

if (strstr(ptr, "/..")
return ... //reject request

Log(...); \\
if (strstr(ptr, "cgi-bin"))

execve(ptr, ...);

Figure 4. Directory traversal

This function only checks the presence of “cgi-bin” in
the URL string pointed by the variable ptr before the
CGI request is processed. By exploiting a buffer overflow
vulnerability in function Log, attackers can change ptr
to point to a string /cgi-bin/../../../../bin/sh
and successfully gain access to a shell.

Training this program in our system, the repeating ap-
pearances of the system call execve lead to a rule in Rule
Set B saying that the first argument of execve must have
the common prefix of “/usr/local/ghttpd/cgi-bin/” across its
repeated occurrences. Though our rule was learned by ob-
serving the repeating occurrences of one system call pattern,
it describes the same observation as a unary relation that is
covered by another data-flow analysis technique monitoring
system call arguments [2].

4.3 New rules learned

As shown in Section 1 and Section 2, our technique is
able to leverage results from control-flow analysis to learn
rules that cannot be learned by prior techniques. In this sub-
section, we show a real example of such rules learned in our
trace-driven evaluation.

Our system recognized two patterns P [16] and P [7] from
the trace-evaluation of the Apache2 web server. Both pat-
terns contain system call read followed by system call
write as shown in the following expressions.

P[16]: read poll write close
P[7] : stat64 open socketcall writev sendfile64

socketcall read write close

A rule learned in pattern P [16] shows that system call
read and write share the common file descriptor in their
arguments. However, this rule is not valid in pattern P [7].
Instead, we learned a different rule for the system calls
read and write in pattern P [7], which says that the string
pointer arguments of these two system calls must point to
strings of the same content.

This is a good example in which control-flow informa-
tion helps learn an accurate and useful rule. Being unable
to recognize the patterns from a system call sequence, prior
approach in data-flow analysis would fail since neither of
the two relations has high probability of being valid in all
occurrences of the system calls read and write in the en-
tire sequence. On the other hand, our technique makes use
of the control-flow information to differentiate the system

calls in two different patterns, which results in two rules that
accurately describe relations in two patterns respectively.

4.4 False alarm rates

To evaluate the false alarm rate of our system simulating
a university production web server, we first used 36 hours of
web logs with 178, 043 benign http requests to learn rules
in the three Rule Sets. After that, we consumed 60 hours of
logs with 253, 418 benign requests and recorded the false
alarms generated. Results are presented in Table 4.

Training Testing False alarm rates in each Rule Set
of syscalls # of syscalls A B C
1.70 × 106 2.89 × 106 0 9.80 × 10−5 1.37 × 10−5

Table 4. Evaluation of a web server

We observe that the false alarm rates are of the order of
10−5. In particular, we did not find any false alarms for rela-
tions in Rule Set A, and only found a small number of false
alarms in Rule Set B and C. Considering the fact that some
events might actually break the rules respectively from Rule
Set B and Rule Set C simultaneously but we were double
counting the violations, the total false alarm rate would be a
smaller number than the sum of the individual records. Our
system experiences low false alarm rates.

4.5 Speed of convergence

Fig. 5 shows the speed of convergence for each Rule Set
in our evaluation with maxdist = 10, minsup = 100, and
minconf = 1.0.

93939188
72

47

26
0

4035302520151050
0

20

40

60

80

100

Log File Consumed (hour)

N
um

be
r o

f S
ta

te
m

en
ts

(a) Rule Set A

4035302520151050
0

Log File Consumed (hour)

0
20
40
60
80

100
120
140

N
um

be
r o

f S
ta

te
m

en
ts 118117115111

88

52
31

(b) Rule Set B

0

40

80

120

160

0 5 10 15 20 25

154152143
125

91
68

37

403530
0

Log File Consumed (hour)

N
um

be
r o

f S
ta

te
m

en
ts

(c) Rule Set C

Figure 5. Speed of Convergence

Figure 5 suggests that using 24 hours of logs of a pro-
duction web server (113,732 http requests) is sufficient to
learn more than 90% of the rules. By performing this train-
ing using a desktop computer with a 2.2 GHz CPU and 1
GB of memory, this training (un-optimized) takes about 12
hours. Note that this training can be done off-line.

4.6 Overhead in online monitoring

In this part, we show the overhead of our system when
it is implemented for online monitoring of system calls of a

399399

production web server. We host the web server on a desk-
top computer with a 2.2 GHz CPU and 1 GB of memory.
The computer runs the Linux operating system with kernel
2.6.22 and the Apache2 web server. The kernel is instru-
mented to intercept system calls made by the web server
for real-time monitoring. Statements in the three Rule Sets
are obtained by training 36 hours of logs of the Singapore
Management University web server.

We use a program to simulate single or multiple clients
sending http requests to the web server. Each client reads
one entry from the log file at a time and then sends the re-
quest to the web server. Each client was configured to send
requests with 10 milliseconds interval and each run last 60
seconds. To evaluate the monitoring overhead, we measure
the latency experienced by the client. Latency is defined as
the difference between the time when a http request is sent
and the time when the client receives a response from the
server. Note that our simulated client is located in the same
Local Area Network as the web server is. We run a few
tests, each with a different number of concurrent clients.
The average latency for each test is presented in Figure 6.

Number of concurrent clientsAv
er

ag
e

la
te

nc
y

(m
se

c)

Monitoring Argument Values
Running Server Only

Figure 6. Average latency experienced

Results show that our monitoring system adds 5 to 8 mil-
liseconds on average to the latency when there are less than
(or equal to) 8 concurrent clients. When the number of con-
current clients increases to 64, the clients experience an ad-
ditional 75-millisecond of latency on average. Such addi-
tional latency is hardly noticeable by human beings. Also
note that the results presented in Figure 6 are latencies mea-
sured by clients on the same Local Area Network of the
server. Considering the latency suffered by clients over the
Internet, which is typically at least a few hundred millisec-
onds2, the additional latency caused by our real-time moni-
toring accounts for a comparatively minor part.

5 Related work

Control-flow information, associated with system call
sequences emitted by the application being monitored, has
been used in the literature to combat intrusions. To improve
Forrest et al.ś model [6] of fixed-length patterns, Wespi et
al. introduced variable-length patterns to better describe the

2For example, we measured the latency between a machine on our cam-
pus network and the web server of www.yahoo.com. Results were be-
tween 569 milliseconds and 576 milliseconds in 15 runs.

application behavior [19, 20]. Static analysis techniques
were introduced by Wagner et al. [17] to thoroughly ex-
plore all possible executions of the application. Sekar’s
FSA model [13] utilized program counter information to
capture both short term and long term temporal relations of
system calls, while Gao’s [8] and Feng’s [5] models relied
on the call stack information to extract paths of the program
executions. All of these approaches, and many others, make
use of system call sequence information but the dataflow
among the arguments are missing, which leads to the possi-
bility of evasion attacks, such as mimicry attack [8, 18].

In data-flow analysis detectors, there has been previous
work on utilizing system call arguments. Kruegel et al. con-
structed models based on the characteristics, e.g., the length
of strings, string character distribution, and structural in-
ference, of system call arguments [11]. The model returns
the probability that a system call argument has the corre-
sponding value during detection. Low probabilities indi-
cate potential attacks. While their work emphasized on the
characteristics of each single argument, inter-relationships
among the arguments are not explored. To enhance an IDS
to combat mimicry attacks, Sufatrio et al. proposed a sim-
ple extension that incorporates system call arguments and
process privileges [14]. They abstracted the values by cate-
gorizing them into classes that are defined by user-supplied
category specifications. However, their abstraction rendered
the relationship among the system call arguments not ex-
aminable. Tandon et al. integrated arguments and attributes
of system calls into their LERAD system with a fixed-size
window and focused on the value set allowed for each argu-
ment [15,16]. Bhatkar et al. managed to extract rules on sys-
tem call arguments by analyzing the data-flow in a control-
flow context [2]. However, the only information they em-
ployed from control-flow context was the program counter.
On the other hand, our approach leverage the results from
control-flow analysis, in particular, system call patterns that
partition long system call sequences into sub-sequences that
correspond to small tasks performed, to learn more accurate
and useful rules that cannot be learned in prior approaches.

Association rule mining techniques that help discover
rules from a large database of transactions [1, 21] are also
related to our work. Association rule mining has many ap-
plications, e.g., in making business decisions such as what
to put on sale, how to design coupons, etc. The problem of
association rule mining is closely related to learning rules
governing system call arguments and return values in that
both are trying to find relations among a large data set. Un-
like the ad hoc approaches taken by previous work on sys-
tem call argument, we adopt the ideas in well-studied asso-
ciation rule mining techniques in time series and apply them
to learn rules governing system call arguments and return
values with moderate modifications and generalization.

400400

6 Conclusion and future work

In this paper we propose a new model for data-flow anal-
ysis for intrusion detection, which leverage the results from
control-flow analysis to learn more accurate and useful rules
among system call arguments and return values. To the
best of our knowledge, this is the first paper that tries to
bridge the gap between data-flow and control-flow analysis
for intrusion detection. Through trace-driven evaluations,
we show that our technique is not only able to detect real
attacks with low false alarm rates, but also capable to learn-
ing new rules that are useful in intrusion detection.

In our future work, we would like to design a more del-
icate way of grouping system calls and their arguments so
that the number of non-significant rules could be reduced.
We also would like to generate statements of form more
complicated than equality, to enrich the profile in our model
to achieve greater accuracy and scalability. Moreover, by
assigning different weights to rules in different sets, we
would try to further improve the accuracy of our system.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-
tion rules between sets of items in large databases. In Pro-
ceedings of 1993 ACM-SIGMOD International Conference
on Management of Data, 207-216. Washington, D.C, 1993.

[2] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly
detection. In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, 2006.

[3] H. Chen, D. Dean, and D. Wagner. Model checking one
million lines of c code. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium NDSS,
2004.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Proceedings of
the 14th conference on USENIX Security Symposium, 2006.

[5] H. Feng, O. Kolesnikov, P. Fogla, and W. Lee. Anomaly de-
tection using call stack information. In Proceedings: IEEE
Symposium on Security and Privacy. Berkeley, California,
2003.

[6] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A sense of self for unix processes. In Proceedings of the
1996 IEEE Symposium on Security and Privacy, pages 120-
128, Los Alamitos, CA, 1996.

[7] D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of
execution graphs for anomaly detection. In Proceedings of
the 11th ACM Conference on Computer & Communication
Security (CCS 2003), 2003.

[8] D. Gao, M. K. Reiter, and D. Song. On gray-box program
tracking for anomaly detection. In Proceedings of the 13th
USENIX Security Symposium, 2004.

[9] D. Gao, M. K. Reiter, and D. Song. Behavioral distance
for intrusion detection. In Proceedings of the 8th Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID 2005), 2005.

[10] D. Gao, M. K. Reiter, and D. Song. Behavioral distance
measurement using Hidden Markov Models. In Proceedings
of the 9th International Symposium on Recent Advances in
Intrusion Detection (RAID 2006), 2006.

[11] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detec-
tion of anomalous system call arguments. In In Proceeding
of ESORICS 2003, 2003.

[12] I. Rigoutsos and A. Floratos. Combinatorial pattern discov-
ery in biological sequences the teiresias algorithm. In Bioin-
formatics, 14(1):55-67, 1998.

[13] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program
behaviors. In Proceedings of the 2001 IEEE Symposium on
Security and Privacy, 2001.

[14] Sufatrio and R. H. C. Yap. Improving host-based ids with ar-
gument abstraction to prevent mimicry attacks. In Proceed-
ings of the 8th International Symposium on Recent Advances
in Intrusion Detection, 2005.

[15] G. Tandon and P. Chan. Learning rules from system calls
arguments and sequences for anomaly detection. In ICDM
Workshop on Data Mining for Computer Security (DMSEC),
Melbourne, FL, 2003.

[16] G. Tandon and P. Chan. Learning useful system call at-
tributes for anomaly detection. In Proceedings of the 18th
International FLAIRS Conference, 2005.

[17] D. Wagner and D. Dean. Intrusion detection via static anal-
ysis. In 2001 IEEE Symposium on Security and Privacy,
2001.

[18] D. Wagner and P. Soto. Mimicry attacks on host based in-
trusion detection systems. In Proceedings of the 9th ACM
Conference on Computer & Communication Security (CCS
2002), 2002.

[19] A. Wespi, M. Dacier, and H. Debar. An intrusion-detection
system based on the teiresias pattern-discovery algorithm.
In Proceedings of the 1999 European Institute for Computer
Anti-Virus Research Conference, 1999.

[20] A. Wespi, M. Dacier, and H. Debar. Intrusion detection us-
ing variable-length audit trail patterns. In Proceedings of the
3rd International Symposium on Recent Advances in Intru-
sion Detection, 2000.

[21] M. J. Zaki. Generating non-redundant association rules. In
Proceedings of the 6th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2000.

401401

